Evolving Collective Behaviors With Diverse But Predictable Sensor States
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Artificial evolution of collective behaviors can be imple-
mented in different ways. Here, we extend the approach of
Hamann (2014). The underlying concept is that the brain
is permanently trying to predict future perceptions and a
state of well-being is a state that allows for precise predic-
tions (Friston, 2010). Striving for maximal prediction suc-
cess needs to be complemented by a force that implements
curiosity and exploration. In this abstract we present an
extended method diverse-prediction that rewards not only
for correct predictions but also for each visited sensory
state. This proves to be a better approach compared to the
method prediction (Hamann, 2014). As in the preliminary
work (Hamann, 2014), we evolve pairs of artificial neural
networks (ANN). One is predicting future sensor input and
the other ANN outputs the next action. In our case study we
simulate a homogeneous swarm (all agents share the same
genome) of N = 20 agents (Ist concept of population)
that move in 1-d on a ring of circumference L. The agents
have 4, discrete sensors covering 4 regions of the agent’s
vicinity and output 1 for ‘there is at least 1 neighbor’ or 0
otherwise. The available actions are: move forward or in-
vert the heading. We evolve pairs of ANN with a population
of size 50 (2nd concept of population) for 75 generations
in 200 independent runs for each tested setting. Fitness for
prediction rewards good predictions of sensor values. Fit-
ness for diverse-prediction rewards for visiting more sen-
sor states (combinations of sensor values) and making good
predictions in those states. For that, we sum up the ratios
between the number of correct predictions for each visited
sensor state and the number of visits of that state over the
whole swarm over time. Generally a desired result is a well
explored behavior space combined with precise predictions.
We check the degree of exploration by investigating a 2-
d projection of behavior space. One dimension is covered
distance which is the sum of the distances covered by the
agents normalized by the considered time period and swarm
size. Second dimension is the largest cluster size which is
the maximum number of agents within sensor range normal-
ized by swarm size. Fig. 1 (top) shows results for L = 50
but 3 settings were tested: high (L = 5), medium (L = 20),
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Figure 1: top: results of evolved behaviors for L=50; bot-
tom: results from chi-squared test for L € {5, 20, 50}.

low agent density (L=50). We compare behavior distribu-
tions for diverse-prediction, prediction, and a control pop-
ulation of random ANNs. The projected behavior space is
divided into a 5 x 15 grid and Pearson’s x? test is used to
compare with a uniform distribution (UD). All 3 are far from
UD (P > 0.99). See Fig. 1 (bottom) for the x? values. We
find that our new method diverse-prediction is best (smaller

values mean the distribution is closer to UD which is better).
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