
Robot Self-Assembly as Adaptive Growth Process: Collective Selection

of Seed Position and Self-Organizing Tree-Structures

Mohammad Divband Soorati1 and Heiko Hamann1,2

Abstract— Autonomous self-assembly allows to create structures
and scaffolds on demand and automatically. The desired struc-
ture may be predetermined or alternatively it is the result of an
artificial growth process that adapts to environmental features
and to the intermediate structure itself. In a self-organizing
and decentralized control approach the robots interact only
locally and form the structure collectively. Designing a complete
approach that allows the robot group to collectively decide on
where to start the self-assembly, that adapts at runtime to
environmental conditions, and that guarantees the structural
stability, is challenging and does not yet exist. We present
an approach to self-assembly inspired by diffusion-limited
aggregation that generates an adaptive structure reacting to
environmental conditions in an artificial growth process. During
a preparatory stage the robots collectively decide where to start
the self-assembly also depending on environmental conditions.
In the actual self-assembly stage, the robots create tree-like
structures that grow towards light. We report the results
of robot self-assembly experiments with 50 Kilobots. Our
results demonstrate how an adaptive growth process can be
implemented in robots. We briefly describe our future work of
how to extend the approach to a 3-d growth process and how
robot self-assembly as an open-ended adaptive growth process
opens up a multiplicity of future opportunities.

I. INTRODUCTION

Self-assembly is a powerful tool in nature that operates on all

scales be it on the level of molecules, cells, or organisms [1].

Trying to create similar capabilities in engineered systems is

very challenging. Promising are observations of simple self-

organized pattern formations, such as the Brazil nut effect,

that can inspire concise approaches in robotics [2]. Recent

results in robot self-assembly [3] show that self-organizing

approaches easily scale to large robot groups (103 robots).

Other approaches that operate on smaller robot groups have

shown that self-assembled robots can adapt to challenging

environments and perform better than single robots [4], [5],

[6], [7]. A related approach is modular robotics that focuses

on dynamic reconfigurations of assembled robot modules [8],

[9], [10], [11], [12]. Similar ideas are investigated in the

field of programmable matter [13], [14], [15] where large

numbers of robot modules assemble and interact to form

desired shapes and to react to external inputs. There are

also approaches to self-assembly that focus on the design of

passive elements. These elements are driven by an external
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Fig. 1. Overall concept drawing, vision of the project flora robotica [17],
[18], [19], societies of symbiotic bio-hybrids of robots and natural plants as
social architectural artifacts, 3-d self-assembly with human interaction (by
Mary Katherine Heinrich, [CITA] Centre for IT and Architecture, KADK)

force (e.g., vibrations) to passively self-assemble [16]. Ap-

proaches to self-assembly in robotics can be separated into

works that focus on self-assembly of predetermined or an-

ticipated structures [3], [5] and works that focus on adaptive

growth processes where only certain qualities of the resulting

structure are specified [20], [21]. A third dimension is added

by categorizing whether aspects of self-repair are consid-

ered [22]. An often overlooked requirement of autonomous

self-assembly is that for a fully autonomous approach the

robots also have to decide where and triggered by whom they

want to start the self-assembly process. A similar problem

exists also in swarm construction [23] where the starting

problem is not always considered explicitly.

In the following we present our approach to self-assembly

as an adaptive growth processes. This research is done in the

context of the EU-funded flora robotica research project [17],

[18] that has the objective to create symbiotic relationships

between a distributed robot system and natural plants (see

Fig. 1). One of the main features is to control the growth of

natural plants using robots and by making use of different

tropisms of plants (e.g., phototropism: growth towards light).

For that purpose we require the self-assembly of a robot-

controlled scaffolding that grows in sync with the natural

plant (within the project we will allow human interaction to

self-assemble in three dimensions, in the following we focus

on 2-d self-assembly without human interaction). Hence, it

is useful to create an artificial growth process that has to

mimic the natural growth process necessarily to a certain

extent. We include the preparatory stage where the robots

have to collectively decide on where and triggered by whom
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Fig. 2. Finite state machine of the robot controller.

they are going to start. We implement a collective decision-

making process that selects a ‘seed robot’ that triggers

the growth process. Instead of predetermining a certain

concrete structure and shape, we predetermine reactions of

the growth process to external stimuli (e.g., growth towards

light) and qualitative features of the structure (e.g., branching

ratio). The growth process itself is inspired by diffusion-

limited aggregation (DLA), which is an aggregation process

relying on random walk of particles that aggregate in a

tree-like structure [24]. Although DLA is typically observed

in chemical systems, investigations of networks with side

branching revealed that trees and the vein structure of leaves

have similar properties as structures grown by DLA [25].

Considerations about topologies that are cost-efficient, for

example, that require minimal building material, are related

to optimal transport networks [26].

In the following, we focus on a self-organized robot assembly

forming trees that grow towards light (phototropism) and that

have predetermined features. In our experiments we use the

Kilobot [27] that was also used in the biggest robot self-

assembly experiment (1024 robots) ever reported [3]. While

we use a number of robots that is two magnitudes lower (50),

we include the preparatory stage of collectively deciding on

a seed and grow structures that were not predetermined and

that adapt to the environment.

II. CONTROL: BEECLUST AND DLA

The robot self-assembly here is structured in two stages:

preparatory stage and self-assembly stage. The robot con-

troller is accordingly based on two different approaches.

The preparatory stage is controlled by a modified version

of the so-called ‘BEECLUST’ algorithm [28], [29], [30]

that implements an aggregation process that reacts to en-

vironmental features. It is inspired by the behavior of young

honeybees that aggregate at warm spots within the hive. Here

we implement it such that it reacts to the light intensity field

and selects a dark spot. We have defined it to aggregate at

a dark spot for the practical reason that we want to grow

the self-assembled structure towards the light later and need

enough space within the arena. The preparatory stage is

completed once a seed robot has been selected. The self-

assembly stage is inspired by DLA [24] and grows a tree

structure that we call ‘DLA tree’.

In Fig. 2 we show the robot controller as finite state machine

consisting of five states and seven transitions. Initially all

robots are started in state moving and the final (accepting)

state is sleeping which is the state of a robot aggregated in the

DLA tree. Independent of their current state all robots (also

those in states napping and sleeping) regularly broadcast a

message via their IR emitter (every 32 ms). A receiving robot

estimates the distance of the sending robot via the signal

strength. We define that messages from senders at a distance

of more than 5 cm are ignored. That scales the DLA tree and

ensures that it fits into the robot arena. This message contains

the robot’s state, its depth (topological distance to the seed

robot) within the tree (if applicable otherwise it is zero), the

maximum depth of the tree (if applicable otherwise zero),

and the maximum measured light intensity in the tree (if

applicable otherwise zero). In state moving a robot performs

a random walk, that is, it moves forward and makes a random

turn on average every eight cycles. Once a robot in state

moving receives a message, it either switches to state napping

or phototaxis depending on the state of the other robot (part

of the message). If the other robot is in state napping or

wake-up then the considered robot switches to state napping

(transition 1).

Similar to the BEECLUST algorithm, the robots measure the

light only when they meet each other and we expect them to

form clusters of napping robots. However, the stopping time

in our method is fixed to three seconds which is different

from the BEECLUST algorithm. The ambient light sensor

generally gives values on the interval a ∈ [0, 1023], but in

our setting we have only a ∈ [280, 1016]. In addition, due

to the position of the ambient light sensor on the robot it

can give very different values at the same position but with

different robot headings. After the waiting time has elapsed

the robot switches to state wake-up (transition 2). In wake-up

the robot does a random turn and moves forward at low speed

for four seconds (low speed because it may be in the middle

of a robot cluster and run into other robots). In state wake-up

the robot ignores all incoming messages and especially does

not switch back to napping. The idea is to allow robots to

leave smaller clusters. After four seconds the robot switches

to state moving (transition 3). Transitions 1, 2, 3 and the

corresponding states implement an algorithm to select a seed

robot (cf. leader selection).

Each robot looks for a light intensity value a < 300. The

darkest spot has a = 280, hence, if a single robot would

need to find it, it would search for long. However, the robots

affect their neighbors’ perception of the light distribution.

A robot’s shadow on the light sensor of a neighboring

robot can largely influence the perceived light intensity. At

the darker area the shadow is longer, denser robot clusters

increase the probability of a shadowing effect, and as a result

robots sense lower light intensity values. The reason is that

a robot inside a cluster iterates over napping states followed

by turns due to the wake-up process without leaving. Turning

repeatedly with close-by robots increases the probability

of getting a shadow on its light sensor. If the robot has

perceived a dark spot then it switches to state sleeping which



is the state of robots that are aggregated in the DLA tree.

Hence, a robot doing transition 4 becomes a seed robot

and starts a new DLA tree. This is a probabilistic control

approach and we cannot exclude the possibility that several

robots become seed robots. That is acceptable because also

several but few DLA trees still serve our purpose. A possible

extension of this approach is to adapt to the environment

by tuning light intensity thresholds dynamically using the

robots’ observations [31].

Robots in state moving that receive a message of a robot in

state sleeping have the chance to join a DLA tree. However,

we define that as a probabilistic behavior because we want to

grow DLA trees of defined features. In particular, we want

to grow trees with a defined branching ratio (i.e., widely

ramified tree compared to the number of used robots) [32],

[25]. Hence, we have to ensure that many robots join the

DLA tree at the leaves (i.e., end-positions of the branches)

and avoid that too many robots join the DLA tree at non-leaf

positions. Every robot constantly sends a message to its local

neighborhood which contains its state. The message also

contains the robot’s depth within the tree d, the maximum

depth of the tree dmax, and the maximum measured ambient

light intensity amax in the tree. In the case of robots that are

not in the sleeping state, only the state value of its message is

used. The robot that is joining the DLA receives this message

and calculates probability

Pd = Pr

[

X <
d

dmax

]

, (1)

where X is a random variable with uniform distribution

over interval [0, 1]. If X < d

dmax
then the robot joins the

tree, otherwise it turns randomly and moves away (random

numbers are generated by the Kilobot’s hardware random

number generator). Pd gives higher probability for tree

depths close to the maximal depth of the tree (i.e., close to

leaves). The second feature of the DLA tree, that we want to

control, is the growth towards light. In plant science that is

called phototropism [18]. The joining robot also measures the

current ambient light intensity a and calculates probability

Pa = Pr

[

X <
a

amax

]

, (2)

which gives a high probability if the measured ambient light

at that position is close to the maximum measured ambient

light in the tree. To implement a low branching ratio and to

implement phototropism we define a probability P as product

of the above probabilities:

P = PdPa. (3)

We define the probability that the considered robot joins

the DLA tree as P . If the robot does not join the DLA

tree, then it uses transition 5 and switches to state wake-

up (i.e., random turn and move forward at low speed). If

the robot joins the DLA tree, then it uses transition 6 and

switches to state phototaxis. In state phototaxis the robot

moves towards the light for a short time by turning back

and forth, permanently measuring the ambient light, and

(a) Kilobot and 1-Eurocent
coin, circle marks ambient light
sensor

(b) experiment setup

Fig. 3. Kilobot and experiment setup.

moving towards the light. Then it switches to state sleeping

(transition 7) and stays aggregated in the DLA tree.

III. KILOBOT AND EXPERIMENT SETUP

We use the Kilobot [27] as shown in Fig. 3a which also

indicates the positioning of the ambient light sensor on the

robot (indicated by a circle). It has a diameter of about 3.3 cm

and a battery that provides a few hours of energy autonomy.

The Kilobot locomotes by stick-slip motion using three legs

and a pair of vibration motors positioned at its sides. The

Kilobot reaches a nominal speed of abut 1 cm/s and can

turn on the spot with up to π/4 rad/s. It has an ambient

light sensor is able to communicate infrared messages of

3 bytes up to a range of 10 cm to 20 cm depending on

the reflection properties of the ground surface (in this work

we limit the range to only 5cm). The robot arena is the

surface of a glass table with dimensions 135 cm × 85 cm,

see Fig. 3b. The light source is a halogen light with power

consumption of 150 W positioned at the right-hand short

side of the table at a distance of 45 cm and a height that

is 55 cm higher than the table’s surface. This setup of the



light combined with the position of the ambient light sensor

on the Kilobot creates challenges when the ambient light

needs to be measured at a certain position. If the robot’s

orientation in that moment causes the ambient light sensor

to be at the shaded side of the robot, then it measures a

low light intensity and vice versa. We have not implemented

sophisticated methods, such as turning on the spot to scan

the light intensity or to keep a history of recently measured

light intensities, because we did not want to slow-down the

self-assembly process or complicate the approach. Instead

we accept the rather probabilistic success of measuring the

ambient light and rely on the robustness of our approach to

noisy measurements.

IV. RESULTS

We have done 8 experiments with 50 robots. Initially the

robots are approximately uniformly distributed in the arena

and in state moving. An experiment is run for 60 minutes.

A video of a complete experiment1 and an accelerated video2

(supplementary material) are provided online. The figures

of these experiments and the accelerated video are also

available3 at Zenodo4. In Fig. 4 we give photos of the

robot arena taken at the end of each experiment and indicate

the resulting DLA tree. During the preparatory stage, the

collective decision-making approach successfully selects a

seed robot in the darker area of the arena as desired. In one

of the experiments (experiment d, Fig. 4d) we observed two

seed robots in all other experiments only one. Only one of

the two seeds in experiment d was able to form a bigger

DLA tree while the other seed only collects two additional

robots.

The adaptive self-assembly process then is successfully

forming trees with distinguishable bifurcations and branches

that grow towards the light at the left-hand side of the

arena. Between three and five robots are not yet aggregated

after the experiment duration of 60 minutes in each of the

experiments. Based on our experience the number of robots

joining the DLA tree in the beginning is high but gets

lower with lower number of available moving robots. That is

expected because the number of robots that approach the tree

is getting lower with decreasing number of moving robots.

To test the effectivity of the implemented phototropism

(eq. 2), we define a measure to estimate the ratio of the

DLA tree that was growing in the right direction. For that

we define a triangle between the left-hand north corner of

the arena, the left-hand south corner, and the seed robot. As

a tolerance we increase the size of this triangle as shown

in Fig. 5. We calculate the ratio of the footprints and parts

of robots that are positioned on that triangle (we call that

‘biomass’) compared to the overall footprint of the whole

robot group. In Fig. 5 we give processed images of the

robots’ end positions indicating the biomass on the target

1https://youtu.be/Vn5Vmh_YIoY
2https://youtu.be/jLfbs6X1tP0
3 https://zenodo.org/record/58703
4see https://zenodo.org, Zenodo is developed by CERN under

the EU FP7 OpenAIREplus (grant agreement no. 283595)

area in white. The percentages of biomass on the target area

for experiments a to h are 26%, 82%, 57%, 28%, 38%, 30%,

44%, and 77% which gives an average of 47%. Experiment b
has a percentage of 82% because the seed robot is positioned

at the far right-hand side of the arena and as a consequence

the target area is big. We consider the average percentage

of 47% as satisfying. The light intensity mainly differs along

the long side of the arena (left/right) and differences in the

light intensity along the short side of the arena (north/south)

cannot be measured by the Kilobot. Hence, it is possible that

the DLA tree grows also in width along the short side of the

arena. In Fig. 6 we give the evolution of the self-assembly

over time for experiment b. The tree has relatively few and

long branches as desired. Hence, our definition of the joining

probability (eq. 3) seems efficient.

We have analyzed the trees using the branching ratio as

defined by Horton [32], [25]. In his classification, a branch

that ends with a leaf has order i = 1. When two first-order

branches combine we get a second order branch (i = 2).

When two second-order branches combine we get a third

order branch (i = 3) and so on. When a second-order branch

and a first-order branch combine we still have a second-

order branch. The total number of ith order branches is Ni

(a connected sequence of branches of the same order are

counted as one). The branching ratio is defined as

RN =
Ni

Ni+1

. (4)

We have evaluated the branching ratio for the resulting trees

(e.g., experiment b: N1 = 15, N2 = 4, N3 = 1, N1/N2 =
3.75 and N2/N3 = 4; experiment c: N1 = 12, N2 = 3,

N3 = 1, N1/N2 = 4 and N2/N3 = 3). Summarizing over

all eight experiments, we get means of N1 = 14 (standard

deviation 2.27), N2 = 3 (0.756), and N3 = 0.875 (0.35). For

the branching ratio we get two values R1
N

= N1/N2 ≈ 4.67
and R2

N
= N1/N2 ≈ 3.43. These are similar ratios as, for

example, Horton [32] gets for rivers (2.2 < RN < 3.9) and

are below the statistics for DLA trees with RN ≈ 5.15 [25].

By changing the probability for a robot of joining the DLA

tree (eq. 1) we could probably influence the branching ratio

but that is left for future work.

V. CONCLUSIONS

We have presented a control algorithm for adaptive self-

assembly that generates a self-organizing growth process.

The growth is directed by growing towards light (pho-

totropism) and we achieve a reasonable branching ratio with

the resulting tree-structure even with noisy measurements of

the ambient light. Our approach includes a preparatory stage

at which the robots make a collective decision about where

they start to grow the structure and who initiates it. We have

reported robot experiments that show the successful growth

of tree-structures towards light. Besides simple tasks such

as growing a maximal amount of biomass into a certain

region, we will also investigate more complex tasks in

future research. For example, we will investigate the growth

of networks with desired features, such as balanced trees,
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Fig. 4. Photos of robot end positions for each experiment. The light is positioned at the left-hand side. Between three and five robots are not yet aggregated
in each of the experiments. DLA trees of the resulting arrangement of the robots are shown as well. The seed robots are highlighted with thicker circles
around those robots. Note that in d there are two seed robots.

(a) 26% (b) 82% (c) 57% (d) 28%

(e) 38% (f) 30% (g) 44% (h) 77%

Fig. 5. End positions of robots with their ‘biomass’ on the target area (red triangle) indicated in white and given as percentage.

(a) 2min (b) 18min (c) 27min (d) 34min (e) 38min

(f) 40min (g) 43min (h) 45min (i) 54min (j) 60min

Fig. 6. DLA tree and self-assembly over time for experiment b. The RGB LED of the robots in the DLA indicates their depth in the tree as determined
by themselves (yellow for depth smaller than 4, blue for depth between 4 and below 16, white for 16 and more).



determined edge lengths, and minimal route factor [33]. This

research is done in the context of the EU-funded project

flora robotica [17], [18] which requires the development

of a robot-controlled scaffolding that parallels the growth

process of natural plants. In future research, we plan to

use the approach presented in this paper to grow three-

dimensional tree-structures. For that purpose we currently

develop dedicated robot hardware. Although the focus will

switch from autonomous self-assembly to self-assembly with

human interaction (robots autonomously determine the struc-

ture but request human interaction to attach additional robot

components), we will be able to re-use the methods reported

here. Within flora robotica we will use 3-d self-assembly as

artificial growth in parallel to natural plants to guide their

growth. Robots and plants will form a bio-hybrid with many

applications, such as growing desired shapes and forms (e.g.,

architectural artifacts: walls, roofs, benches). The system is

supposed to work in close interaction with human beings,

to detect their requirements, and to interact with them. The

methods for self-assembly reported in this paper will be key

to achieve that.
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