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Abstract—The self-organizing bio-hybrid collaboration of
robots and natural plants allows for a variety of interesting
applications. As an example we investigate how robots can be
used to control the growth and motion of a natural plant,
using LEDs to provide stimuli. We follow an evolutionary
robotics approach where task performance is determined by
monitoring the plant’s reaction. First, we do initial plant
experiments with simple, predetermined controllers. Then we
use image sampling data as a model of the dynamics of
the plant tip xy position. Second, we use this approach to
evolve robot controllers in simulation. The task is to make
the plant approach three predetermined, distinct points in an
xy-plane. Finally, we test the evolved controllers in real plant
experiments and find that we cross the reality gap successfully.
We shortly describe how we have extended from plant tip
to many points on the plant, for a model of the plant stem
dynamics. Future work will extend to two-axes image sampling
for a 3-d approach.

1. Introduction

In the context of the EU-funded project flora robot-
ica [1], [2], we are interested in creating a self-organizing
bio-hybrid [3] that combines the behavior of autonomous
robots and living, natural plants. Our long-term objectives
are to create mixed societies of growing plants and robotic
structures and to generate synergies between them by bring-
ing together the best aspects of both worlds (cf. work on
mixed societies of robots and animals [4], [5], [6], [7],
[8]). Plants can grow to produce structures efficiently. They
sense features of their environment and adapt to dynamic
environments [9]. The robots, in turn, can influence the
growth of plants by imposing stimuli and can extend the
plants’ sensing and decision-making capabilities. The chal-
lenges of this mixed-society approach are equally distributed
between the tasks of sensing and actuation. The plant’s state
needs to be detected by the robot to allow for closed-loop
control. The robot is required to impose appropriate stimuli

at appropriate times to influence the plant in the desired
way.

Another challenge is the extremely different time scale
of plant growth control that differs in several magnitudes
from motion control of mobile robots. In comparison to
many other living organisms, plants are slow in many of
their activities including, of course, their growth. For exam-
ple, the common bean plant (Phaseolus vulgaris), which is
considered to be a fast growing plant, grows on average 3cm
per day [10]. In addition to growth, plants also show mo-
tion, which is often ignored. Bean shoots’ intrinsic motion
(circumnutation [11]) allows the plant tips to explore their
local environment and – together with phototropism (i.e.,
directed growth towards or away from light [12]) influence
growth to approach more preferable regions. Plant motion
seems underestimated by many, likely because their speed
is very slow in relation to time scales of human perception.
However, on these slow time scales the speed of motion
is still considerably faster than the speed of growth. For
example, according to our preliminary experiments, bean
plants (longer than 20cm) bend towards a light source
with a velocity of up to 4.4mm/min. Angular velocities of
the intrinsic circumnutation reported in literature are even
larger [13].

In this paper, we investigate how the motion and growth
of a plant can be directed by a robotic hardware setup that
uses light as an attractive stimulus. Before we apply meth-
ods of evolutionary robotics we must create an appropriate
simulator that addresses relevant features of plant growth.
Hence, we first conduct preliminary experiments to generate
a simple model for dynamics of a simulated plant tip. Then
we use this simple model to evolve robot controllers (i.e.,
the robot’s ‘brain’ which integrates the sensory input into a
coherent reaction via actuator output) that direct the plant
motion and growth in agreement to a desired pattern of xy
targets.

The variety of plant models in the literature is extensive.
Most models from plant science focus on partial aspects
of plant systems or are too detailed and too complex for
use in robot controllers (e.g., [14]). In the context of re-



search in self-organization and, for example, artificial life,
different usefully scaled approaches have been reported to
model plant growth. In L-systems [15], a set of rules are
iteratively applied to a string of symbols (grammars). The
rules process symbols and expand the string whereas certain
symbols are interpreted as geometrical structures. Similarly
in swarm grammars [16], the L-system is extended such
that the reaction of the plants to their environmental stimuli
is included in the model. The individual nodes then act as
autonomous reactive agents that can be attracted to light
sources. Bending of plants (motion) is approximated by
considering the stiffness of the connected stem elements and
the attraction by the light source in the environment [17].
This way a simple model of plant growth is created that
also represents reactions to a dynamic environment. In [18]
and [19] abstract branching trees are derived from the in-
verse computation based on polygon meshes of the geometry
of an actual tree and its variations.

Despite this rich variety of available models, we follow
a purpose-specific approach that is based on acquired data
of actual plant behavior. We find that creating a model
specific to our purpose is very efficient and successful as
reported in the following. Hence, our approach could serve
as a positive example for future applications in similar
contexts. In the following we use processed data acquired
by sampling images of the growing plant as a simple model
of its combined growth and motion behaviors.

In many robotic applications, evolutionary methods were
successfully applied to generate controllers for autonomous
robots [20]. One approach of evolutionary robotics is that of
embodied evolution where the controller is directly evolved
on actual robots in hardware [21]. However, the evaluation
of an individual’s fitness can be a costly and especially
time-consuming task. Hence, a simplification is to evolve
the controllers in simulations which can implement a con-
siderable speed-up. The drawback is the so-called reality
gap problem [22]. It refers to the often experienced problem
that controllers developed in simulation may perform poorly
in reality due to limitations of the simulation and possibly
unknown effects in reality.

In the following, we apply evolutionary methods to
evolve a closed-loop controller to direct the tip of a bean
plant. The task is to have the plant tip approach predefined
points in space by switching a pair of light sources on
and off with appropriate order and timing. Controllers are
evolved in simulation that we obtain from processed data
collected by image sampling in a preliminary experiment
setup using real plants. We collect positions of the plant tip
along with the current status of the light sources while the
light sources are switched on and off in a regular pattern
controlled by a trivial, non-reactive controller. From the
collected set of plant tip positions we build a simple model
to simulate the growth and motion of a bean plant’s tip
in response to the light sources. A controller for the light
sources is then evolved in the simulator for directing the
bean’s tip such that the tip reaches three different predefined
positions. Finally, we use an evolved controller to control a
real plant. This test is successful which means we are able

Figure 1. Bio-hybrid system setup.

to cross the reality gap with our approach.
We discuss our extension of our image processing

method from a single point description of the plant growth
tip, to a 10-point description of the full plant stem geometry.
This allows the tip-motion model to be extended to a full
stem-dynamics model. In the future, we will combine this
extended method with cameras and image sampling in two
axes. This could allow us to evolve robot controllers for
more complicated tasks, such as 3-d target patterns or the
avoidance of obstacles.

2. Methods

This section describes the setup of the bio-hybrid sys-
tem, then how it was used to record the positions of bean-
tips growing under trivial hand-coded controllers (i.e., light
switches in fixed intervals). This data enabled us to construct
a model to simulate tip-trajectories in the system under any
sequence of light condition changes. With this model in
hand, we can evolve controllers on the simulations. We de-
fine the task – reaching 3 targets –, present a flexible fitness
function and describe the evolutionary approach taken using
the MultiNEAT library.

2.1. Bio-hybrid setup

The biological part of the system is the common bean
plant (Phaseolus vulgaris L. var. nanus cf. Saxa, a bush
bean1). We germinated the beans in commercial soil for
growing vegetables2 in 1.5l-pots (with 15cm top diameter
and soil level at 12cm height).

The robotic part of the system consists of two light
sources (Adafruit NeoPixel RGB LED strips3) as actuators

1. https://shop.nebelung.de/gemuesesamen/bohnen/buschbohnen-saxa.
html

2. FloraSelf Gemüse- und Tomatenerde ohne Torf (Floragard Vertriebs-
GmbH)

3. https://www.adafruit.com/products/1506

https://shop.nebelung.de/gemuesesamen/bohnen/buschbohnen-saxa.html
https://shop.nebelung.de/gemuesesamen/bohnen/buschbohnen-saxa.html
https://www.adafruit.com/products/1506


(plus an additional LED light-bulb4 as a flash-light), a Rasp-
berry Pi for control, and a camera module5 as sensor. The
Raspberry Pi uses the light sources to control the plant’s
growth and motion, and receives feedback from the plant
through the camera module (see Fig. 1).

The bio-hybrid system is set up in a plant-tent of 200cm
height and 120cm in width and depth. The tent is clad in
black cloth from the inside to reduce light reflections and
to allow for taking high contrast photos. The pot is put on
the ground at the center of the back of the tent such that the
center of the pot (the location of the root-shoot transition
zone) is at a distance of about 8cm to the back wall and
60cm to each side. The camera is set up at a height of
32cm, facing the plant. It is 82cm from the back wall and
74cm from the pot’s central axis, with focal plane aligned
to that axis. Given a soil level of 12cm, the plant tip is at
the center of a captured image when it reaches a height of
20cm.

On each side, we placed a NeoPixel RGB LED strip. A
single strip contains 144 individually controllable integrated
light sources (a “NeoPixel” or WS28126) each carrying three
LEDs: red, green and blue, with peak-emission λmax at
wavelengths 630nm, 530nm and 475nm respectively. This
means we control 864 LEDs in total, organized in 288
NeoPixels. Each NeoPixel consumes 0.24W when emitting
white light at full power, giving 18 lumen. As we always
light up one and only one strip, we can expect a total power
consumption of up to 8.64A. Each NeoPixel strip is coiled
around a cylinder to form an LED strip lamp. The two LED
strip lamps are placed on the back-wall of the tent at a height
of 30cm from the soil level and with a distance of 35cm to
the left and right of the rooting, respectively (see Fig. 1).
In addition to the LED strip lamps, a single flash light LED
bulb is located directly above the pot at a height of 80cm
(68cm above soil level) and is controlled by the Raspberry
Pi via a relay. The flash light bulb outputs 806 lumen of
warm white light (2700 K) and consumes 9W, however it
is only lit up for two seconds once every five minutes.

2.2. Model setup

2.2.1. Preliminary plant experiments. Our plant model is
based on experiments with the real plant in a setup with a
simplistic, non-reactive controller. An open-loop controller
switches between the two light sources in regular time
periods of six hours for a total duration of 83.3 hours.
We have done six repetitions of this experiment. In each
experiment the plant is photographed every five minutes.
In Fig. 2 we give compiled images that show the plant’s
position and geometry during each experiment7. They give
a good overview of how much motion the plant shows in
the horizontal dimension and they also clearly show that the

4. Philips LED bulb 8718696490860 (http://www.philips.co.uk/c-p/
8718696490860/)

5. https://www.raspberrypi.org/products/camera-module/
6. WS2812 integrated light source (https://cdn-shop.adafruit.com/

datasheets/WS2812.pdf)
7. Find a video at: https://youtu.be/r4PknIwgTyo
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Figure 3. |∆x|, indicated by color, plotted according to timestep and light
source duration, with the right light source accumulating in the positive
direction on the x-axis and the left light source accumulating in the
negative.

overall plant behavior is equally influenced by growth and
motion. In comparing the compiled images of experiments 1,
2, 4, and 6 (experiments with similar durations), a variety
in the overall grown height and the horizontal motion is
seen, although we have taken care to keep the same ex-
periment setup and conditions. Observing variance in plant
experiments is a well-known phenomenon in plant science,
which requires high numbers of repetitions. However, in the
context of this research, where the focus is on evolutionary
computation and robotics, such high overheads for experi-
ments are infeasible. Instead we test our approach based on
an engineering perspective by testing whether the model,
that results from these experiments, helps us to successfully
control a plant. We also test if the evolved controllers are
able to perform properly with such dynamic and unexpected
plant behavior.

2.2.2. Processing of images. Time-lapse photographs of
the above mentioned preliminary experiments are taken and
stored at five minute intervals. The images are processed
by the following method, using the OpenCV library. First,
a Gaussian filter is added to smoothen the images before
sampling, thereby reducing error when the sampling res-
olution is lower than that of the original image. At the
sampling resolution, the pixels showing plant material are
extracted. The high brightness contrast between background
and foreground allows the brightest pixels in the desaturated
image to be identified as plant material. Then after cropping
the image to the extents of actual plant growth (to exclude
the pot and light sources), the plant tip position is extracted.
The highest sampled position on the plant is assumed to be
the plant tip. The (x, y) plant tip position is stored in cm
and scaled to the dimensions of the experiment setup. We
make use of this (x, y) position data in our purpose-specific
model, described next.

2.2.3. Tip-motion model. We used the data from our
preliminary experiments and image processing, to create
a simple tip-motion model. For simplicity we define the

http://www.philips.co.uk/c-p/8718696490860/
http://www.philips.co.uk/c-p/8718696490860/
https://www.raspberrypi.org/products/camera-module/
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
https://youtu.be/r4PknIwgTyo


Figure 2. Compiled time-lapse photographs of experiments. From left to right, experiments 1, 2, 3, 4, 5, and 6.
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at each timestep, in all six preliminary experiments, with
color indicating right or left light source.

Figure 4. Plant tip trajectories from preliminary experiments (only includes real data; does not include mirrored.)

system configuration at time step t as (x, L, C)t, where xt

is the plant’s tip position, Lt is the plant’s length, and Ct is
the lighting condition (Boolean value indicating whether the
right light is on). The model simply provides the next plant’s
tip position xt+1, given the current system configuration
(x, L, C)t. Hence, this reality abstraction is used to obtain
the next tip position xt+1 for discrete five minutes time
steps, until the plant achieves a height of 13.8cm. This
simple model captures interesting and relevant behaviors of
the plant. For instance, Fig. 3 demonstrates that the plant tip
moves slowly in early growth, much more quickly (higher
values of |∆x|) in the middle growth stage (timesteps 300-
800), and then more slowly again in late growth.

We assume that the plant has no bias to grow towards
either of the two directions (right or left) and also that
the two light sources are identical. Therefore, in order to
logically double the available data and increase the model’s
precision, we mirrored the data to both sides by mapping
x 7→ −x and flipping the corresponding Boolean value C
while keeping y identical.

Our model calculates the next system configura-
tion (x, L, C)t+1 for a given current system configura-

tion (x, L, C)t. First, we define a rectangle

Rt = ((xt−wx ≤ xt ≤ xt+wx), (yt−wy ≤ yt ≤ yt+wy)),
(1)

with the plant tip position xt at the center, width 2wx, and
height 2wy (i.e., a sliding window). In our experiments, we
specified a sliding window size of 1cm×2cm (wx = 0.5 and
wy = 1). A set Pt of all data points x̂ from our preliminary
plant experiments that are within the rectangle Rt and that
have the same light condition are selected. From these we
collect the set of x-positions only:

P x
t = {x̂|(x̂ ∈ Rt) ∧ (Ĉ = Ct)}. (2)

In addition, we collect the corresponding plant tip posi-
tions x̂n as they were observed in the subsequent time step
in our preliminary plant experiments. We calculate the plant
tip shifts ∆x̂ = x̂n− x̂ for all points in Pt. Our main focus
in the model is on the plant tip shifts ∆x̂ = x̂n − x̂ in x-
direction. Sx

t is defined as the set of all plant tip shifts in
x-direction for P x

t :

Sx
t = {∆x̂|x̂ ∈ P x

t }. (3)
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25

20

15

10

15 10 5 0 5 10 15
plant tip x position (cm)

+1.0 cm

0.0 cm

1.0 cm

∆y

 
 

5

pl
an

t 
t i

p  
y 

po
si

ti
on

  ( c
m

)

(d) Right light on, ∆y.

Figure 5. Colormaps indicating the distribution of ∆x and ∆y values at each xy position. Each colormap depicts either ∆x data or ∆y data, and depicts
either timesteps during which the right light was on or timesteps during which the left light was on. All four colormaps include both real data and mirrored
data, which are pooled to be used in the model. White patches indicate absence of data.

Fig. 4(a) depicts the xy trajectories of the tip positions
from the six preliminary experiments, where data is col-
lected to calculate the plant tip shifts in the model. Fig. 4(b)
shows the vector direction of tip motion at each timestep in
the experiments, and indicates the portions of each trajectory
that occurred when the right light was on or the left light was
on (indicated by blue vectors or green vectors, respectively).
While these two figures depict the experiment data only, the
data used in the model is mirrored, as mentioned before,
due to the assumption of having no bias towards left or
right (meaning that x data is multiplied by −1 and the
light source Boolean value is inverted). Fig. 5 demonstrates
the xy distribution of calculated tip shifts (both ∆x and
∆y) in the model’s data (including six real trajectories
and six mirrored trajectories). Fig. 5(b) and 5(d) represent
the ∆x and ∆y values when the right light is on. (This
includes all right light occurrences in both the mirrored and
unmirrored data.) Fig. 5(a) and 5(c) represent the ∆x and
∆y values when the left light is on (again for both mirrored
and unmirrored). These four figures indicate the full set of
calculated tip shifts (by light source) for each xy position,
which is the data pooled for use in the model.

In our previous work, we have introduced a promis-
ing approach which calculates the plant tip shift ∆xt =
(∆xt,∆yt) deterministically for the x-coordinate and
stochastically for the y-coordinate [23]. The mean ∆x̂ =
1
|Sx

t |
∑

Sx
t

∆x̂ is used to calculate ∆xt while ∆yt is ran-
domly sampled from a normal distribution. This approach
has shown promising results, however, it ignores important
information about the rotational behavior of the plant tip.
It gives changes in y-direction independent of the plant’s
inclination. As an extension to our former model [23], we
now also model plant length Lt and include it to the system
configuration. At each time step t, we increment Lt by
a randomly sampled value ∆yt from a normal distribu-
tion N (µ = 0.03, σ = 0.01):

Lt+1 = Lt + ∆yt. (4)

The mean value of 0.03 is the average increase in plant
length as observed during all preliminary experiments. Also
the variance was estimated based on that data. Hence, for
simplicity we assume that the plant grows with the same
speed independent of its age. We calculate a temporary plant



tip position

x′t+1 =xt +
1

|Sx
t |
∑
Sx
t

∆x̂, (5)

y′t+1 =yt + ∆yt. (6)

Then we determine the resulting inclination angle

αt+1 = atan2(y′t+1, x
′
t+1) (7)

of the plant based on this temporary position. In a final step,
we determine the plant’s actual new tip position

xt+1 =

(
Lt+1 cos(αt+1)
Lt+1 sin(αt+1)

)
. (8)

This way we are able to model the rotational movement of
the plant tip around its base (0, 0).

2.3. Controller setup

In our setup, the controller is an artificial neural network
(ANN). The input to the controller is the current plant tip
position xt = (x, y) at each time step t (discrete time
steps represent five min in reality). The output is a decision,
whether the left light or the right light is turned on (the
light condition Ct), hence steering the plant tip to achieve
the required task. Initially, x0 = (0, 4), when the plant is
4cm in height, right after the apical hook has opened and the
tip points upward (dicotyledonous plant seedlings typically
germinate from the soil with their tip bent downwards
for protection of vital tissues [24]). Then, in the case of
performing in reality, an image of the plant is captured and
processed to acquire the plant tip position. In the case of
performing in simulation, the tip-motion model is used to
acquire the tip position.

2.3.1. Definition of the task. The plant tip controller is
required to accomplish a simple task: three target points.
The plant tip has to approach three different positions in
space during the experiments (see Fig. 7). The first target
x∗1 = (3, 6), the second target x∗2 = (−5, 9) and the
third target x∗3 = (−1, 13.5), while x∗0 is the initial tip
position x0.

2.3.2. Evolutionary approach. To evolve the controllers,
we use MultiNEAT [25]. MultiNEAT is a portable software
library implementing NEAT (NeuroEvolution of Augment-
ing Topologies) in order to evolve ANNs. NEAT [26] is an
evolutionary algorithm that attempts to keep the diversity
of the population. It starts with simple ANNs and alters
both the weights and the network topology by using com-
plexifying methods [26]. Initially, we have evaluated the
performance of different sets of NEAT parameters. As a
result, the set of parameters in Table 1 has shown better
performance (i.e., earlier convergence), hence, was used is
our experiments. These parameters were also successful in
previous similar experiments [23].

The input layer consists of two neurons, the hidden
layer has a variable number of neurons (determined by

NEAT), that is, one output neuron, and an unsigned step
activation function. The input of the network is the current
tip position (xt). At each time step t, the experiment’s
light condition Ct is determined by the network’s output.
According to the current system configuration (x, L, C)t the
plant will react to the light stimulus by growth and motion.
Next, in the case of performing in simulation, (x, L, C)t
is passed to the tip-motion model to determine the next
tip position (xt+1). In the case of performing in reality,
an image of the plant is captured and processed and the
next tip position is acquired. This procedure is repeated
until the plant reaches 13.8cm in height which is enough to
allow visiting the three targets and also could be achieved
in reasonable period of time for our reality experiments
(about 25 hours). The fitness function F (eq. 9) evaluates
the performance of the controller.

∆xt = xt − xt−1,

f(t) =


∆xt, if xt < x∗i
−∆xt, if xt > x∗i
|∆xt|, if xt = x∗i

,

Ti =
{
t | y∗i−1 ≤ yt < y∗i

}
,

F =

N∑
i=1

∑
t∈Ti

f(t), (9)

∆xt is the tip position shift on the x-axis between time
steps t− 1 and t, f(t) is the discrete fitness at time step t,
(x∗i , y

∗
i ) represent the position of target i, the set Ti is a

subset of all the time steps where f is relevant for target i
(y∗i−1 ≤ yt < y∗i ), N is the number of targets (in our
experiments N = 3), finally, F is the final fitness of the
controller after accumulating all the discrete fitnesses for
the N targets.

The fitness function is simple and flexible. It is based
on a straight forward technique for rewarding/punishing the
controller after each time step. If the controller makes the
right decision Ct (choose the light source which steers the
tip position closer to the next target), it is rewarded a value
which is equal to |∆xt| which reflects precisely how well
it performed in the current time step. If the controller steers
the tip away from the next target, it is given a punishment
of −|∆xt|. Hence, the theoretical best fitness value is the
total distance on the x-axis the plant tip needs to visit all
the required targets. For our three target points task, the
theoretical best is 15cm.

3. Results

First, we report the results of evolving controllers using
the above described model (see Sec. 2.2.3). Second, we re-
port the results of experiments that test whether the evolved
controllers can be transferred to reality.
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Figure 6. Performance of the evolutionary process over generations for 20 evolutionary runs
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Figure 7. Trajectories of the simulated plant tip for two successful and two unsuccessful controllers



TABLE 1. USED NEAT PARAMETERS.

Parameter Value Parameter Value

PopulationSize 50 CrossoverRate 0.5
DynamicCompatibility True MutateWeightsProb 0.9
YoungAgeTreshold 15 YoungAgeFitnessBoost 1.0
OverallMutationRate 0.5 WeightReplacementMax 5.0
MinSpecies 5 WeightMutationRate 0.75
MaxSpecies 25 Elitism 0.1
SurvivalRate 0.6 MutateAddNeuronProb 0.04

3.1. Evolving controllers in simulation

The controllers are evolved in simulation. The results
from 20 independent evolutionary runs are shown in Fig. 6.
Fig. 6(a) shows the fitness of the best controller over 2000
generations for all runs (boxplots give minimum, 25th per-
centile, median, 75th percentile and maximum). Following
the median, the fitness increases steadily and saturation
is achieved after 1000 generations. Fig. 6(b) shows best
and population average fitness for a selected evolutionary
run. The first and second observed steps in best fitness
correspond to controllers that successfully reach the first
and second target points. The third step is a noticeable
enhancement in the general performance of the controllers
(the tip gets closer to the first two targets and approaches the
third one). In the final step, controllers reach the third target
followed by a steady enhancement in the general behavior.
Fig. 7(a), and 7(b) show two different successful behaviors
(i.e., simulated plant tip trajectories) generated by two of the
best evolved controllers. The blue color indicates that the left
light source is on, while the turquoise color indicates that the
right light source is on. In Fig. 7(a), the successful controller
keeps the left light on even after reaching the second target
point. Only later it switches to the right light source and
rotates the plant tip into the third target point mostly by
using the motion of the plant. Here, the controller evolved
to gradually move away from the third target upon reaching
the second target. Later, it switches directions and moves the
tip quickly to the third target. This controller scores a fitness
of 14.3cm. These seven millimeters are lost because, when
the tip reaches the third target’s height y∗3 , it is still slightly
short of the target’s x∗3. In Fig. 7(b), a different behavior
is observed after reaching the second target, such that, the
controller keeps switching between the lights until the plant
tip reaches the third target. This controller scores a fitness
of 14.97cm.

Fig. 7(c) shows the typical trajectory of a controller
that fails to reach the third target point. It seems that the
model and possibly also the real plant are quite sensitive
in the region between target point two and three. At this
height and location, according to our model, the plant tip
moves faster than usual (higher values of |∆x|, see Fig. 3).
Therefore, when the controller switches directions, the tip
moves quickly far beyond the third target, resulting in low
fitness despite the achievement of the first two targets.

As mentioned earlier, we have performed 20 evolu-
tionary runs, 2000 generations each. Therefore, we have
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Figure 8. Trajectory of the real plant tip for one of the best evolved
controllers, fitness value is 10.9cm.

performed two milion evaluations in total (population size
is 50). As a measure of success, we compared our results
to the performance of the best controller from two million
ANNs obtained from the initialization process of NEAT.
The best random controller scores 8.72cm fitness (the tip
trajectory is shown in Fig. 7(d)), hence, our evolutionary
approach outperforms this random approach.

3.2. Performance of controllers in reality

In a final set of experiments we test whether we can
use the controllers that were evolved in simulation also to
control a real plant. This is a typical test related to the reality
gap problem [22]. Usually, one would expect that a con-
troller evolved in simulation does not directly transfer into
a real experiment setup for reasons, such as limitations in the
simulation. We tested one of the successful controllers (see
Fig. 7(b)) in reality, by running it directly on the Raspberry
Pi. The experiment was repeated successfully six times,
scoring an average of 9.96cm fitness. The lower fitness is
most likely an effect of differences between the plant model
and the actual plant behavior. However, the controller seems
to compensate and to deal with situations that are different
from those seen in the simulations. The tip trajectory of one
of the experiments shown in Fig. 8 indicates a reasonable
behavior despite the lower fitness. The controller could make
the plant tip visit the first and third targets, however, it could
only approach the second target. Obviously, the controller
was performing the correct behavior by switching on the left
light source but the plant tip stopped responding for some
while and started growing leaves8 until it missed the second
target. Nevertheless, afterwards, the controller steers the tip
to the other direction towards the third target successfully.
This controller scored a fitness of 10.9cm in reality (scores
14.97cm in simulation).

Hence, we conclude that the controller successfully
transferred from simulation to reality without any changes,
that is, we have successfully bridged the reality gap for

8. Find a video at: https://youtu.be/r4PknIwgTyo

https://youtu.be/r4PknIwgTyo


this specific problem. We can only speculate about why this
approach is successful. The overall task is rather simple and
the controller does not need to develop a very sophisticated
mapping of plant tip positions to actuator values. However,
from the simulation results (see Sec. 3.1) we have learned
that especially the region between the second and third
target point seems sensitive to the controller’s decisions.
Our modeling approach is directly based on data obtained
in several repetitions of the same setup. Hence, it seems
probable that the simulation correctly reflects the reality
despite the model’s simplicity.

4. Extensions

In ongoing work, we use an extension of the previously
described image sampling method for detecting a plant tip
throughout growth. Our tip-motion model, using a single
(x, y) point description of the plant tip, is successful and
efficient for the task of reaching a pattern of distinct targets
in an xy-plane. As we look to future work of more detailed
patterns of targets and more complicated tasks, we seek to
extend the single point tip description to a 10-point stem
description. These inputs allow us to extend to a model of
the full plant stem’s dynamics.

The 10-point description of plant stem geometry, as can
be seen in Fig. 9, is achieved by a further development
of the image sampling method previously described. Time-
lapse photographs of the experiments are processed by the
following method, using IronPython9 and the libraries of
VPL Grasshopper10. These libraries allow the image to be
sampled at full resolution and saturation, so no smoothening
or desaturation is required. First, the red (R), green (G),
blue (B), and brightness (V ) channels in the image are in-
dividually isolated and remapped onto the domain (0.0, 1.0).
Pixels with

((G−R ≥ 0.5) ∧ (G−B ≥ 0.5))

∨(G ≥ 0.75)

∨(V ≥ 0.75) (10)

are identified as plant material and their (w, h) pixel coor-
dinates are saved as (x, y) points. The points are grouped
by y-value, and the median x-value is taken for each group.
The resulting (x, y) points are identified as plant stem and
converted into a planar polyline11. Polyline simplification is
used to convert the multi-part polyline to a polyline with
ten equidistant vertices.

Then timestep history is incorporated, to cull discrete
errors caused by variation in lighting conditions of the
experiment setups. For this process, the polyline length (L),

9. http://ironpython.net/
10. http://www.rhino3d.com/download/grasshopper/1.0/wip/rc
11. Find a video at: https://youtu.be/r4PknIwgTyo
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Figure 9. 10 point description, represented as 10-vertex polylines, with end
vertex highlighted.

starting vertex (S), and ending vertex (E) are considered.
Timestep t is replaced with a duplicate of timestep t− 1 if

(|Lt − Lt−1| ≥ 0.25(Lt))

∨(dist(St, St−1) ≥ 0.25(Lt))

∨(dist(Et, Et−1) ≥ 0.5(Lt)). (11)

Afterwards, the 10-vertex polyline is cast as an array of ten
(x, y) points, to be used in our extended purpose-specific
model of plant stem dynamics. In future work, we will
use this extended model for more complicated tasks such
as obstacle avoidance or spiralling around an object. The
extended model is better suited for these types of tasks
because fitness is determined by the behavior of the full
stem, not only the tip. By using a 10-point model, informa-
tion about the plant stem’s bending, such as curve radius,
apex point of curve, inflection point, or contraflexure point,
can be incorporated into the fitness functions used to evole
controllers in simulation.

5. Conclusion and future work

We have presented our evolutionary robotics approach
to the bio-hybrid collaboration between robots and natural
plants. Starting from initial plant experiments, we have made
use of a model in our evolutionary runs that is based on
image sampling data. Within that model, we have evolved
effective controllers that steer the plant’s tip to predeter-
mined positions. Hence, we have showed that we can control
the growth and motion of a plant with our setup of LEDs as
actuators and a camera as sensor. The evolved controllers
were tested on real plants and performed correctly which
means that our approach successfully bridges the reality gap
in this particular setup.

Our future work follows the concepts of the ongoing
project flora robotica [1], [2]. Besides the obvious next step
of using the ten point description of the stem geometry in
our next experiments, we also plan to make the last step
to a 3-d setup and model. We will need to add another

http://ironpython.net/
http://www.rhino3d.com/download/grasshopper/1.0/wip/rc
https://youtu.be/r4PknIwgTyo


camera, extend the model appropriately, and define a task of
either visiting target points in 3-d space or even define tasks,
such as growing a spiral shape around an obstacle. Another
approach in our future work is to create a decentralized
setup with cameras integrated into distributed robotic nodes
or relying on proximity sensing only (based on infra-red).
In the long run we intend to create flora robotica systems
with tightly cooperating robots and plants that rely on new
levels of self-organized synergetic behavior.
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