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1 Introduction

Our main objective in flora robotica is to create plant-robot bio-hybrids. In the following we
report results that are key for effective bio-hybrids. We have made progress in developing con-
trollers for plant shaping, we have worked on procedures for plant stimulations and tip detection
for the Plant Binary Decision Wall (PBDW), we report models for self-organized bio-hybrid
growth, and advances of investigations of plant affection by different stimulations.

In order to establish more robust bio-hybrids, that could also survive in different environments
and could consist of different plant species, we require various ways of influencing plant growth
and development. In Section 2 we present an experimental setup to investigate the influence of
different chemical and mechanical stimulations on plants.

Plant-robot communication is crucial in bio-hybrids. We have noticed unexploited potential
of interorgan rapid communication in plants and report an investigation of long-distance signaling
pathways (see Section 3).

Shaping plants is an important tasks for the robotic components of the bio-hybrid. In Sec-
tion 4 we report how we use light stimuli in the PBDW setup and how we implement the
proximity sensing of plants. We focus on a task that allows a user to specify a target for the
plant to approach and the robotic system then grows the plant towards that target.

In Section 5 the Vascular Morphogenesis Controller (VMC) is reported in all details. This
is our main approach to direct the self-assembly and growth of artificial components in the
bio-hybrid. In Section 6 we conclude and make a few comments about future tasks.

While here we focus on software and wetware, more information about our hardware approach
can be found in deliverable D1.2 Evaluation of mechatronics prototype of the robotic symbiont
including supporting software.

Deliverable D2.2 Page 5 of 47
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Figure 1: Photo of A. thaliana that were grown in drought conditions, that is, without watering
for one week. 10 mM SA of water (control) was applied in spray once a day.

2 Investigation on plant stimulation

2.1 Application of chemicals and influence on plants growth and development

During the vegetative season of 2016, two types of phytohormones were applied: auxin (1mM
NAA) and cytokinin (4.5 uM kinetin); both to tomatoes and hornbeams. Effects of spraying
phytohormones on one of the tomatoe branches were shortly described already in PTR Part B.
The same phytohormones in spray were applied once a week on single branches of hornbeams,
which were growing in a greenhouse. Effects due to weak light conditions, that strongly pro-
motes the elongation of all branches, were not taken into consideration. Moreover, a persistent
aphids infection has occurred with a great impact on the trees. In autumn 2016, the hornbeams
were transferred to the AMU Botanical Garden, where we have executed an efficient treatment.
The subject of Biogenic Volatile Organic Compounds (BVOC) was studied for influencing plant
growth and survival in flora robotica. Chemically BVOC are terpenoids, derivatives of amino
acids or fatty acids that are emitted by plants in stress conditions. One of the BVOC is salicylic
acid, that is also a phytohormone responsible for resistance against pathogens and for inducing
necrotic reactions after infection. 1 mM and 10 mM salicylic acid (SA) was applied as spray
for 5-weeks to Arabidopsis thaliana in an early generative stage of development (see Fig. 1).
Watering was withdrawn and then every day the spraying was applied. No increase in the plant
survival rate during this period of water shortage was observed after applying SA, as expected for
high SA levels [47]. However, high SA levels result also in oxidative bursts and necrotic effects.
Stress due to the SA application might in these cases outplay the protective effect. Lower SA
concentrations are already tested for Arabidopsis. For the vegetative season of 2017, we have
developed our plan for the application of phytohormones and BVOC. Most of our experiments
have already started on March 1, 2017: bean, pea, and cucumber have been sown. Poplars
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Figure 2: Poplars Populus tremula x alba after transfer to greenhouse from growth chamber
(March 1, 2107). In order to induce branching, tips of the trees were cut at least one time before
transfer to greenhouse.

were transferred from the growth chamber to the greenhouse (see Fig. 2). The chosen plant
species are: poplar (Populus tremula x alba), common bean (Phaseolus vulgaris), Arabidopsis
thaliana, pea (Pisum sativum), and cucumber (Cucumis sativus). Poplars are fast growing trees
in which the DR5:GUS transgene was introduced. DR5:GUS enable staining tissues with higher
auxin levels, so additional information could be derived by using this line. Although poplars are
known for their low quality of wood (so for flora robotica’s construction tasks they might not
be the best species), poplars probably will tolerate more greenhouse conditions than beech and
hornbeam. Bean, pea, and cucumber are creeper vegetables which grow fast, positively react
to scaffolds (braids) and it is possible to go through a few of their life cycles in one year. The
range of phytohormones that have been prepared for use are: auxin (IBA, the more stable form
than NAA), cytokinin (6-BAP, kinetin), and gibberellic acid A3. BVOCs that are in use for
influencing plants: isoprene, ocimene, and farnesene. Phytohormones and BVOC are applied in
spray and by sponges (see Fig. 3). The sponge actuation is performed by fixing the sponge, that
is saturated with chemicals, on the plant’s stem. The effect of different chemicals and different
ways of applications will be compared with each other and with a negative control (water). We
are focusing on plant shapes and growth. Although the general picture of phytohormone effects
on plants growth is well-known, previous research did not focus on shaping plants by localized
applications of chemicals. Besides plant shapes, the physiological parameters will be tested using
physiological sensors. The monitored parameters are: chlorophyll content of leaves, transpiration
rate measured by stomatal conductance and thermography. The appropriate devices (Decagon
SC1, DualexScientific+, Flir E6) are going to be set up in April 2017.

2.2Mechanical stimulation on plants

The biomechanical behavior of plants in response to vibrations has not been described in all
details yet [9]. Moreover, vibrations have got an influence on growth, shape, and wood structure.
In 2016 we have shown the non-destructive effect of vibration motors on the growth of beans. For
2017, the effect of vibration motors on the growth of woody plants (poplar) is under preparation.
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Figure 3: Application of BVOCs (1% farnesene, 1% hexanol, 1% ocimene) using sponges (cur-
rently a semi-automated application is implemented).

Five vibration motors were placed on a branch of poplar. The motors are controlled by the
MU Board and a Raspberry Pi. The individual branches of poplars are subject to various
vibration modes. Vibrations will be individually chosen in every case. They will vibrate the
branch in a way that minimizes the spread of vibration to the stem or other branches.

An air flow produced by a fan has being used to influence a tree’s shape and wood structure.
The influence of this “artificial wind” is more global than in the case of using vibration motors.
However, a strong air flow also results in vibrations of the plant organs. Some of the poplars
were subject to “artificial wind” training in a growth chamber (see Fig. 4). Now in greenhouse
conditions, these plants are subject to applications of chemicals. One of the trees did not survive
mechanical stress (training) and a broken tree top is an example of the potential destructive
power of mechanical stimulation (see Fig. 5).

Braided structures, which have become an essential part of flora robotica, have to be con-
sidered also as mechanical stimulation for plants. The growth of beans on braids was shown
previously, now the growth of perennial plants on a braid is investigated. We study the change
of mechanical properties of braid-plant systems as a result of interweaving living plants with
braids. Stiffness (measured by a force perpendicular to the surface that is required for a certain
displacement) is a feature of interest. For this purpose we reconfigure a Zwick/Roell Material
Testing System. Early tests of mechanical properties of complete braid structures were not sat-
isfactory (see Fig. 6), hence, additional experiments will be done. Plant species that are going
to be tested are: Fallopia, common bean, Clematis, and Ipomoea.
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Figure 4: (left) poplar at the beginning of the wind training; (right) after two weeks of the
application of constant air flow. The light source was placed opposite to the air flow source, in
order to strengthen the effect of directional growth.

Figure 5: Comparison of a poplar that was broken by air flow and one of the survivors. The big
difference in the root system sizes is clearly visible; the roots significantly determined the shoots’
resistance to wind.
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Figure 6: One of the preliminary tests on mechanical properties of braided structures with a
Zwick/Roell Material Testing System.
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3 Plants intercellular signaling pathways for bio-hybrid communication

3.1 Introduction

Intercellular signaling differs between plants and animals. In animals there are cells specialized
in conducting electric signals, neurons, and centralized nervous system, that ensure a fast and
efficient transmission of signals and the integration of multiple signals within the brain. These
structures form the basis for the development of advanced bionic prostheses, an example of
existing bio-hybrids. Neurons could be directly stimulated by electrodes. The brain could learn
the meaning of these received signals, train itself in the perception of the signals and the creation
of appropriate reactions [26]. Plants are sessile and lack both neurons and nervous systems, so
different approaches for creating bio-hybrids have to be developed. In plants many mechanisms
of rapid long distance signaling were shown, such as four types of electric signaling, calcium
waves, and Reactive Oxygen Species (ROS) [21]. All of them are involved in responses to biotic
and abiotic stresses. In order to establish plant bio-hybrids in the future, a deeper investigation
of plant signaling pathways is required. Deciphering signaling crosstalk of plants in parallel with
development of new sensors will result in novel possibilities for creating plant bio-hybrids [37].
Our current progress of studying plant long distance signaling is presented in the following.

3.2 Crossings of Arabidopsis thaliana lines

The Arabidopsis thaliana line with overexpression of Jas9-VENUS [25] is used as sensor line that
reveals the effect of rapid long distance signaling by imaging changes in the level of jasmonic
acid (JA). A decrease in VENUS fluorescence means that JA levels rise (Fig. 7). H2B-RFP
give a fluorescence reference that should show a stable intensity level. This line was used to
prove changes in the JA level after mechanical damage in a distant organ [25]. Effects of local
stimulation, that are important for a whole organism, could then be observed in distal tissues
or organs. Such processes are also important for plant bio-hybrids and for understanding of
how the reaction of plants can help in establishing plant-robot communication. Jas9-VENUS is
now being crossed with different A. thaliana knockout lines: rbohd, tpc1-2, glr3.3, glr3.6, mca1,
mca2 (Fig. 8). These knockout lines are NASC lines deprived of key genes involved in ROS
– RbohD, calcium – MCA1, MCA2, electric signaling GLR3.3, GLR3.6, so some mechanisms
of long distance signaling should be deprived or even absent. Investigation of long distance
signaling alterations would be feasible after obtaining crosses of knock-out lines with the sensor
line. Synthesis of jasmonic acid occurs often after contact with stress factors, in nature it is
correlated with events triggered by herbivores or pathogens. By the end of February, crossings
of NASC knockout lines – N645413, N577608, N535353, N570610, N239204, N669029 – with the
Jas9:VENUS line were done. Seedlings of first generations are growing and will be genotyped
soon. For the genotyping, primers have already been designed. Polymerase for direct PCR,
REDExtract-N-Amp PCR Kit (Sigma-Aldrich) will be used.
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Figure 7: Image of Jas9-VENUS in the A. thaliana seedling. The nuclear localization of Jas9 is
visible. Maximum Intensity Projection from stack image is shown. Left: fluorescence, excitation
514 nm, emission 520-560 nm; right: transmission image; middle: merged image.

Figure 8: Image of A. thaliana flowers: natural (left) and after gymnoecium isolation (right).
Gymnoecium isolation is required to preventing self-pollination. After gymnoecium isolation,
pollen from the paternal anther is transferred to gymnoecium.
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Figure 9: Part of sequencing results of the RbohD:pENTR dTOPO DNA construct. Next, the
sequence was analyzed with the Nucleotide BLAST online tool to compare it with database
sequences.

3.3 Cloning of genes of interest

Cloning of genes involved in different long distance signaling is done for investigating protein-
protein interactions. First, RNA was isolated from 4-weeks old Arabidopsis thaliana rosette
leaves and cDNA was synthesized (Super Script II Transcriptase, Thermo Scientific). Then,
primers specific for genes of interest (i.e., RbohD, MCA1, MCA2, GLR3.3, GLR3.6) were used
for their amplification with Phusion Polymerase (Thermo Scientific). Amplified genes were cloned
into pENTR dTOPO (Invitrogen) with the help of NcoI, AscI restriction enzymes (Fast Digest,
Thermo Scientific) and ligase T4 (Promega). The cloning products were sequenced (Fig. 9) and
in the next step cloning into expression plasmids from pSAT and pSITE series was done. Chosen
expression plasmids make it possible to transiently overexpress a gene (i.e., protein as a gene’s
product) in plant cells, such as protoplasts or epidermis. The gene of interest is expressed together
with a fluorescence protein tag on N- or C- terminus, so protein localization would be obtained.
Moreover, protein-protein interactions will be studied with the FRET-FLIM microscopy method
and with co-immunoprecipitation. Information about interactions between proteins involved in
different signaling pathways would help us in deciphering crosstalk between different long distance
signaling pathways. In the beginning of March 2017, genes of interest were cloned into expression
plasmids. The preparations for overexpression in Arabidopsis thaliana protoplasts and tobacco
epidermis are in progress and at least preliminary results will be obtained within 2017.
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4 Robots for shaping natural plants

Here we describe the methods for two distinct efforts for the robotic shaping of natural plants.
One of these efforts is evolved control of plant growth and motion (refer to our paper [18]), and
the other is distributed robotic control through the Plant Binary Decision Wall (PBDW) setup
(refer to our paper [45]).

4.1 Light stimulus

4.1.1. Phototropism in a simple bio-hybrid setup

As described in [18], in comparison to many other living systems, plants are slow in many
of their activities including, of course, their growth. For example, the common bean plant
(Phaseolus vulgaris), which is considered to be a fast growing plant, grows on average 3cm
per day [4]. In addition to growth, plants also show motion, which is often ignored due to its
low speed. Bean shoots’ intrinsic motion (circumnutation [40]) allows the plant tips to explore
their local environment and – together with phototropism (i.e., directed growth towards or away
from light [6]) – influence growth to approach more preferable regions. Plant motion seems
underestimated by many, likely because their speed is very slow in relation to time scales of
human perception. However, on these slow time scales of plant activities, the speed of motion
is still considerably faster than the speed of growth. For example, according to our preliminary
experiments, bean plants (longer than 20cm) bend towards a light source with a velocity of up
to 4.4mm/min. Angular velocities of the intrinsic circumnutation reported in literature are even
larger [29].

In our bio-hybrid approach, the robot needs to detect the plant’s position to allow for closed-
loop control. The robot also needs to impose appropriate stimuli at appropriate times to influence
the plant in the desired way. We investigate how the motion and growth of a plant can be
influenced by a robotic hardware setup that uses light as an attractive stimulus. The light
sources in the setup are controlled by a closed-loop controller detecting the plant’s tip and
reacting to its position such that the tip reaches a number of target points. For that, we first
create an appropriate simulator that addresses relevant features of the plant growth based on
the data collected from a set of preliminary experiments with the plant and the light sources
controlled by a predefined open-loop controller.

4.1.2. Phototropism and ‘shade-avoidance’ in the PBDW

As described in [45], here we use the climbing common bean (Phaseolus vulgaris) as the biolog-
ical element. This plant exhibits strong positive phototropism (i.e., directional growth towards
blue light) and climb the mechanical connections in our scaffold setup, greatly enhancing the
probability of the plant’s small growth tip being detected by an IR-proximity sensor. Flowering
plants’ active directional growth towards a light source (i.e., phototropism) is triggered by the
stimulus of blue and UV-A bands (wavelengths λ ∈ [340nm, 500nm]) [6]. Plants’ photosynthesis
(i.e., building up energy-rich biomolecules using light energy) uses any frequencies of the visible
spectrum λ ∈ [400nm, 700nm], and the process is especially efficient under the red band λ ∈
[620nm, 680nm] [19]. There are many additional health effects of light frequencies, as flowering
plants, for example, require small amounts of blue light for healthy growth [7].

Even though green light is the most reflected visible band, any present can significantly
impact the plant [41] in photosynthesis and potentially in the phototropism process. In short,
green light is not required for either of these processes to occur, but it could affect either or both.
The plenty watery and air-filled compartments scatter the light and while red and blue light are
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Figure 10: The spectrum of light emitted by the robots, peaks are blue, green, red (RGB LEDs),
and far-red (λ ≈ 740nm). Measured at distance of 20 cm, facing the robot (LEDs at intensity
as in experiments).

excellently absorbed by the surface layers of the leaf, green light mainly drives photosynthesis in
the leaves’ interior. Here we exclude green light, to maximize the difference in wavelength of the
cues (as stated above) and also to be able to run the investigated monochromatic LEDs at the
highest possible intensity.

Natural plant reaction to the far-red band λ ∈ [700nm, 800nm] stimulus is complex and varies
greatly among species. In many species, combinations of red and far-red wavelengths can trigger
the ‘shade avoidance syndrome’ [33]. The protein that, when activated by red light, mediates the
developmental changes associated with this frequency band (Phytochrome) is in turn deactivated
by far-red light. Plants efficiently absorb the red band of light, in contrast to far-red, which is
mostly reflected by or passed through the plant. Thus, very low ratios of red-to-far-red in vivo
can signal to the plant that it is shaded by closely neighboring plants. This stimulus typically
leads to enhanced stem elongation and reduced shoot branching, as well as reduced investments
in leaves and roots. The direction of incident blue light (indicating gaps in the canopy) and the
direction of relatively high far-red (indicating competing plants as sources of future shade) are
vital information for the plant’s natural survival [42].

In our current experiment setup, the primary light used is in the visible spectrum λ ∈
[400nm, 700nm], delivered by the robotic node’s six RGB LEDs with light emission peaks at
λ ∈ {625nm, 525nm, 465nm} and a combined maximal dissipation of 3W. The range of emitted
light is relevant to plants, as discussed above. The secondary light used is the far-red band λ ∈
[740,745]nm, emitting from three 3W far-red LEDs. In Fig. 10, the spectrum of emitted light by
a robotic node is shown (as measured by a Hamamatsu C12666MA Micro-Spectrometer). The
spectrometer was not calibrated with light sources of defined spectra, therefore, the vertical axis
(labeled ‘counts’) gives arbitrary values that show relative intensities.

4.2 Proximity detection of plants

4.2.1. Plant detection via image sampling

Preliminary plant experiments. As described in [18], our tip-motion model builds on our
prior work [44] by using the same group of photographed preliminary experiments to create a
data set of plant growth and motion. These preliminary experiments (described here according
to [44]) use a predetermined open-loop controller which simplistically alternates the two light
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Figure 11: Compiled time-lapse photographs of experiments. From left to right, experiments 1,
2, 3, 4, 5, and 6. Photographs originally published in prior work [44].

sources over regular time intervals. There are six repetitions of the experiment. In each repetition,
the light source alternates every six hours and the experiment is photographed at five minute
intervals. The plants’ tip position and stem geometry over time (see compiled images for each
experiment in Fig. 11) show that their dynamics are substantially influenced by both growth and
motion1. Despite the consistent setup conditions in each repetition, the compiled images show
variety in the plants’ patterns of horizontal motion and overall height. In plant science, variance
in experiments is an expected phenomenon and is dealt with by conducting large quantities of
repetitions. In our work, we instead take an engineering approach, and deal with plant variance
by testing whether our method succeeds in controlling a plant despite certain unpredictability
in behavior.

Tip detection. The images described above provide time-stamped raw data documenting plant
responses to the predetermined open-loop controllers. The images are sampled2 at 1/8 resolution
and further processed by using the following method for detecting the plant tips. The tip-
detection method works based on two sets of photographs. The first set contains the background
photographs showing the setup without a plant. The second set contains the photographs from
the preliminary experiments.

For the background photographs, many examples of each controller state are included in
the set, as there can be slight variations in lighting conditions cast on the background. The
green RGB channel value at each pixel position (i, j) is isolated and remapped onto the do-
main (0.0, 1.0), resulting in a matrix Sk = {si,j,k} for all images k. To represent the range of
green values possible at every pixel in the background, matrices A = {ai,j} and B = {bi,j} are
constructed with the same shape as Sn matrices. Every entry of A and B are the minimum and
maximum values of the corresponding entries in all the S matrices:

∀ai,j , bi,j : ai,j = min
k

(si,j,k), bi,j = max
k

(si,j,k). (1)

After constructing these matrices representing the background setup, the photographs from
the preliminary experiments containing plants are processed. The green channel value is again
isolated for each pixel (i, j) and remapped to the domain (0.0, 1.0), then is saved into the

1Find a video online: https://youtu.be/r4PknIwgTyo
2 The tip-detection was implemented in two separate programming platforms. First, we implemented the

method in Iron-Python and native libraries of the VPL Grasshopper pertaining to image sampling for processing
the data in simulation. Then, we implemented the method in standard Python, utilizing the OpenCV library.
This was then used for the reality gap experiments detailed in Sec. 4.3.4.
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(a) Trajectories of plant tip position in the six prelim-
inary experiments, with experiment number indicated
by color (refer to Fig. 11) and height in the final time
step in each experiment indicated on the right-hand
side.
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Figure 12: Plant tip trajectories from preliminary experiments (only includes real data; does not
include mirrored). Figures originally published in prior work [44].

matrices Gk = {gi,j,k} for every image k of the preliminary experiment. The Gk matrices are
then compared against the range matrices A and B from the background setup in order to detect
pixels containing plant material. A pixel (i, j) inside a certain cropped window is identified as
containing plant material if its value is external to the corresponding range, with respect to
threshold θ = 0.2,

Pk = {(i, j) | ∀i, j : gi,j,k < (ai,j − θ) ∨ gi,j,k > (bi,j + θ)}. (2)

Each identified plant pixel is extracted to set P , and their xp = (xp, yp) coordinate positions
are used to identify two possible locations of the plant’s tip. In order to locate the tip xt,
plant pixels are compared to the globally defined anchor xa = (xa, ya), representing the position
where the plant stem emerges from the soil. We identify two possible tip positions (corner
point xc = (xc, yc) and high point xh = (xh, yh)),

xc = argmax
xp∈P

|xa − xp|+ |ya − yp|, (3)

xh = argmax
xp∈P

|ya − yp|. (4)

From the two points xc and xh, the one closer in Euclidean distance to the previously detected
tip xt−1 is selected as the current tip xt,

xt =

{

xh, if ‖xt−1 − xh‖ < ‖xt−1 − xc‖
xc, else

. (5)

The plant tip positions xt are not based on physical measurement units but on pixels. We make
use of this position data in our purpose-specific model described below.

The trajectories of tip positions are shown in Fig. 12(a), with the six experiments indicated by
color. Fig. 12(b) shows the 2D vector direction of tip-motion at each time step in the experiments,
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categorized according to active light source (right light as blue vectors and left light as green
vectors).

10-point stem detection. Future extensions of the controllers will use 10-point descriptions of
the full plant stem. For these extensions, we use the anchor point and tip point described above.
The remaining intermediary points ((x2, y2), . . . , (x9, y9)) describing the stem are preliminarily
identified from set P , and then smoothed using a method that preserves a faithful representation
of stiffening dynamics. These eight intermediary stem points are defined as

yi =
i

9
|y1 − y10|+ y1, (6)

xi = xp : ∀xp ∈ P : |yp − yi| < θ2, (7)

where θ2 = 30 pixels. In this way, we define a 10-point description of the full stem (a, (x2, y2), . . . ,
(x9, y9), t). Due to minor variations in images caused by shadows and light reflections on the stem,
this 10-point detection contains some errors. We address these errors using a simple algorithm
based on Smoothing via Iterative Averaging (SIA) [28], which preserves the key topological
features of the curve being smoothed. Our algorithm utilizes the equation

(xi, yi) =

(

1

2
(xi−1 + xi+1),

1

2
(yi−1 + yi+1)

)

(8)

iteratively, according to the following steps:

1. for i = 2, 4, 6, and 8, apply equation 8,

2. for i = 3, 5, 7, and 9, apply equation 8,

3. for i = 2, 4, 6, and 8, apply equation 8.

In this way, the intermediate stem points are smoothed with the SIA-based process, while the
tip and anchor point remain unchanged. We then convert the smoothed 10-point sets to cm and
scale them to match the physical setup dimensions. The resulting data set (see Fig. 16) is used
to construct our correlated data-driven model, described in the following section.

4.2.2. Proximity sensing in the PBDW

As described in [45], detecting the proximity of an approaching plant tip is challenging. In order
to select the most successful option, we tested three proximity sensors. First, in an early phase
experiment, we tested MPR121 capacitive touch sensors (see Fig. 14(b)). In this test, threads
are mounted on a wall in a diagrid layout, for the plants to climb and grow along. Soldering tin is
wound around the threads (close to diagrid intersections) and is connected to the capacitive touch
sensors. In this test, the plants were correctly detected only about 50% of the time. Second,
in an early prototype of our robotic node (see Fig. 14(b)), we tested both HC-SR04 digital
Ultrasonic sensors and GP2Y0A41SK0F analog IR-proximity sensors. The ultrasonic sensors
work most successfully when facing a flat object perpendicularly, maximizing reflections. Due
to the changing orientation and small size of a plant growth tip, the sensor readings were very
inaccurate. By contrast, the IR-proximity sensors achieved high accuracy. This is especially true
when the direction of the approaching plant is predetermined (e.g., climbing a thread/rod), as
is the case in our experiment setup (see Fig. 13). We therefore selected the analog IR-proximity
sensor for the task of plant proximity detection. Based on several tests and given that a reading
is taken every 5 seconds, we develop a weighted arithmetic mean approach to detecting a plant

Page 18 of 47 Deliverable D2.2



EU-H2020 FET grant agreement no. 640959 — flora robotica

IR-proximity 

sensor

Plant growth tip

Figure 13: Plant tip detection.

(a) Early robotic node prototype. (b) Capacitive touch experiment.

Figure 14: Earlier prototype and proximity sensor experiments.

with an IR-proximity sensor. Where the last sensor reading gives 20% of the final average
weight, the plant tip is reliably detected at a threshold of approximately 5 cm distance from
the node. According to the sensor datasheet, the emitted IR wavelength should be restricted
to 870 +/- 70 nm, however, if we measure the light spectral distribution with a spectrometer
from the immediate vicinity of the IR source (at a distance of < 2mm) we can detect some
emission of critical wavelengths below 800 nm, slightly overlapping the action spectrum of the
far-red LED. However, no critical wavelengths overlapping the LED spectrum are measured at
distances > 2mm. Therefore, although the plant response to far-red light heavily depends on the
ratio to incident red light, the spectrum emitted from the sensor can be safely assumed to not
interfere with the far-red LEDs acting as stimulus.

4.3 Control algorithms

4.3.1. Introduction to evolved control for user-defined targets

As described in [18], our evolutionary robotics approach to the task of steering plant growth and
motion follows the methods described in this section. First, the bio-hybrid system setup shown
in Fig. 15 is used in both preliminary data-gathering experiments and reality gap experiments.
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Figure 15: Bio-hybrid system setup. The setup is housed in a grow box, with the plant near
the back wall and the camera near the front wall, facing the plant. A pair of light sources that
provide stimuli are mounted above the plant on either side, right and left, and a flash for the
camera hangs directly above the plant.

The preliminary experiments record the growth patterns of plants exposed to light sources from
trivial manually-defined controllers, and a sampling method interprets the images into a raw
data set of plant tip positions. Then, this data is used to build a purpose-specific model of
tip-motion that enables simulation of tip trajectories in our setup under any given light source
sequence. Finally, controllers are evolved in simulation using the tip-motion model, for the task
of steering a plant tip to reach sequences of arbitrary user-defined targets. The method used for
generation of user-defined targets is described, along with the two types of fitness functions used
for evolution.

Bio-hybrid setup. The bio-hybrid system contains one biological plant that has a simple
symbiotic relationship with centrally controlled robotic elements. The robot influences the plant
by triggering directional light sources in its environment, and the plant influences the robot
through on-board image sampling that detects plant dynamics.

As in the previous work [44], the plant in this setup is the common bean plant (Phaseolus
vulgaris L. var. nanus cf. Saxa, a bush bean3), germinated in commercial soil intended for
growing vegetables4. The bean is planted in a 1.5 liter pot, with a top diameter of 15 cm and
soil level of 12 cm from the base.

The robotic portion of the system is subject to a centralized controller, and consists of the
following elements: two NeoPixel LED strip lamps5 for providing stimuli, a camera module6

3https://shop.nebelung.de/gemuesesamen/bohnen/buschbohnen-saxa.html
4FloraSelf Gemüse- und Tomatenerde ohne Torf (Floragard Vertriebs-GmbH)
5Adafruit NeoPixel RGB LED strips (https://www.adafruit.com/products/1506)
6Raspberry Pi camera module (https://www.raspberrypi.org/products/camera-module/)

Page 20 of 47 Deliverable D2.2

https://shop.nebelung.de/gemuesesamen/bohnen/buschbohnen-saxa.html
https://www.adafruit.com/products/1506
https://www.raspberrypi.org/products/camera-module/


EU-H2020 FET grant agreement no. 640959 — flora robotica

to record the growth and motion of the plant by capturing photographs, an LED light-bulb7

which provides flash for capturing photographs, and a Raspberry Pi8 as a central control and
processing unit. A NeoPixel strip contains 144 individually controllable integrated RGB LEDs9,
with peak-emission at wavelengths λmax 630nm, 530nm, and 475nm respectively. Each LED
consumes 0.24W when emitting white light at full power, giving 18 lumen. As we only trigger the
two NeoPixel strips individually (never simultaneously), we can expect a total power consumption
of up to approximately 35W.

Various scripts were developed to detect the plant tip, run the evolved artificial neural net-
works (ANNs), control the light sources, and regularly upload the captured photos and log files
to a Network-attached storage device (NAS). The scripts run on the Raspberry Pi as background
processes managed by systemd10. The ZeroMQ11 library is used to allow the necessary commu-
nication among these processes (e.g., sending a flash-light request before capturing a photo).

The bio-hybrid system is contained in a commercial grow box of dimensions 120 cm ×120 cm
×200 cm in width, depth, and height (see Fig. 15). The standard grow box is modified, with the
interior walls clad in matte black foam board to reduce light reflections and provide a smooth,
consistent background that is in high contrast to the plant. The potted bean plant is positioned
at the center of the back of the grow box, such that the plant’s root-shoot transition (i.e., the
location where the germinated bean protrudes from the soil) is at about 12 cm height, 8 cm from
the back wall, and 60 cm from each side wall.

The camera module is positioned near the front wall of the grow box, at a height of 32 cm.
It faces the plant, with the focal plane parallel to the back wall, as diagrammed in Fig. 15. This
placement positions the camera approximately 74 cm from the plant and 82 cm from the back
wall. The flash-light used when recording photographs hangs at a height of 80 cm from the base
of the potted plant, and is centered over the pot. The two NeoPixel strips are coiled in cylindrical
shapes to form two LED strip lamps, and affixed to the back wall of the grow box at a height
30 cm above the root-shoot transition and 35 cm to either side (see Fig. 15).

4.3.2. Model of plant tip behavior

As described in [18], the simple data-driven model of plant growth and motion, through which we
project plant tip trajectories in simulation and inform the evolution of our bio-hybrid controllers,
is constructed according to the method described in this section. Our purpose-specific tip-motion
model is based on time-lapse photographs of preliminary plant growth experiments. These images
are sampled to detect the xy-coordinates of the plant tip, building a data set of timestamped
tip positions under one of two triggered light sources. We use this data to calculate the time-
normalized tip-motion vectors of a subsequent time step according to the current bio-hybrid
system configuration. These motion vectors are used, in conjunction with statistical functions
incorporating the stochasticity appropriate to plant growth, to construct our model of plant tip
dynamics.

Tip-motion model. We use the data from our preliminary experiments and image process-
ing to create a simple tip-motion model. The model used in this work is an extension of our
prior work [44]. In the previous approach, we defined the system configuration at time step t
as (x, L, C)t, where xt is the plant’s tip position, Lt is the plant’s length, and Ct is the lighting
condition (Boolean value indicating whether the right light is on). The model simply predicted

7Philips LED bulb 8718696490860 (http://www.philips.co.uk/c-p/8718696490860/)
8Raspberry Pi 3 Model B (https://www.raspberrypi.org/products/raspberry-pi-3-model-b/)
9WS2812 integrated light source (https://cdn-shop.adafruit.com/datasheets/WS2812.pdf)

10Systemd is a system and service manager for Linux operating systems
11http://zeromq.org/
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the next plant’s tip position x̂t+1, given the current system configuration (x, L, C)t. This was
achieved by windowing into the recorded data during run time of the simulations and, from
this window, calculating average position-changes that are corrected for consistent plant-lengths
using standard trigonometry [44].

In this work, in order to greatly improve the speed of the plant trajectory simulations, our
extension relies on an array of precomputed model statistics for each pixel location where a tip
could be detected. During run time, the position of the detected tip is used to index into this
array, retrieving the values needed for simulation. Because the model statistics are precalculated
and therefore do not require short computing times, we use more sophisticated methods of
aggregating the data. This allows the plant length parameter Lt to be removed from the model,
simplifying the full description of the system configuration to (x, C)t.

In summary, we first aggregate the tip detection data into a four-column 2D array storing
normalized and mirrored x, y, ∆x, and ∆y values from all six preliminary experiments. We then
window into this new data to calculate the averages and standard deviations of the ∆x and ∆y
values contained in the area around each pixel. We finally create two 3D arrays (one for the
left light source, one for the right light source) that both have the same xy measurements of
the experiment images (where the rows and columns correspond to those of an image), and have
four layers in the third dimension, containing the mean ∆x, mean ∆y, standard deviation of ∆x,
and standard deviation of ∆y. These two arrays comprise the tip-motion model and are used to
compute the next tip position during simulation of growth and motion dynamics. Following is a
more detailed description of the procedures.

Aggregating the tip data. Each tip position change from xt to xt+1 occurs under the influ-
ence of Boolean light condition Ct+1. For each active light source, we first construct sets L (left
light) and R (right light) containing tip positions xt = (xt, yt),

L = {xt| Ct+1 = 0}, R = {xt| Ct+1 = 1}. (9)

We assume our setup to be symmetric and the plant to lack directional bias, therefore we mirror
the data by transforming all ∆xt values associated with the left light source (Ct+1 = 0) such that
they provide additional data for the right light source. We calculate the tip position changes
for all time steps t (excepting the final time step for each experiment) and time-normalize it
by ∆xt = (xt+1 − xt)/∆ut, where ∆ut = ut+1 − ut is the duration in minutes between every
time step t. These vectors, along with positional data, are mirrored according to the width w of
the processed image, and the data recorded in both light conditions is pooled together. In this
way, all tip-motion data is aggregated into a single data set cast relative to the right light source.
It is later reinterpreted to apply to both light sources, during the step of building the tip-motion
model. Finally, the time-normalized and light-mirrored xi, yi,∆xi,∆yi data for all experiments
is pooled into a 4-column 2D array DR, where

DR = {(xi, yi,∆xi,∆yi)|(xi, yi) ∈ R} ∪ {(w − xi, yi,−∆xi,∆yi)|(w − xi, yi) ∈ L}. (10)

Building the tip-motion model. Our purpose-specific tip-motion model consists of two parts,
each part for one of the two light conditions (left light source or right light source). The two parts
are each structured as a 3D array, matching the x-axis and y-axis pixel count of the sampled
images in two dimensions, and layering four sets of values in the third dimension. The first
array of the model, for the right light source, is calculated from the (xi, yi,∆xi,∆yi) ∈ DR

described above. The second array is later calculated from the first. We utilize inverse distance
weighting (IDW) [35] in calculating the first array, to interpolate and smooth the data. The four
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values calculated are the IDW averages of x-axis and y-axis tip-motion vectors, along with their
respective standard deviations.

In contrast to the method in prior work [44], which windows into the aggregated tip-motion
data using small rectangles (37.5 pixels × 75 pixels in width and height), here we window into
the data using large circles of radius r = 200 pixels. Also, while the prior work [44] models
tip-motion differently along the x-axis and y-axis, here we model them jointly, taking the IDW
average and standard deviation of the windowed data for both axes.

To calculate the model for the right light source, we first window into the aggregated data
DR and construct array Wxp

, which has dimensions matching the sampled images. For each
position xp = (xp, yp), the data points of DR where xi = (xi, yi) falls into window radius r = 200
is collected as

Wxp
= {(xi, yi,∆xi,∆yi) ∈ DR | ‖xi − xp‖ ≤ r}. (11)

This data is used to compute the IDW averages and standard deviations of ∆xi and ∆yi at
each xp. A weight wi is assigned, based on a simple IDW function with exponent two, to every
data point xi = (xi, yi) where (xi, yi,∆xi,∆yi) ∈Wxp

, such that

wi =

{

1/‖xp − xi‖
2 if ‖xp − xi‖ ≥ 12

1/122 else
. (12)

If the distance is under 12 pixels in this operation, we fix it at 12 to avoid overweighting and
division by zero, as our tip detection occurs at 1/8 resolution. The IDW averages for each
position xp = (xp, yp) are computed according to (xi, yi,∆xi,∆yi) ∈Wxp

as

µ(∆xp) =
1

|Wxp
|

|Wxp
|

∑

i=1

wi∆xi, (13)

µ(∆yp) =
1

|Wxp
|

|Wxp
|

∑

i=1

wi∆yi, (14)

and the IDW standard deviations are computed as

σ2(∆xp) =
1

|Wxp
|

|Wxp
|

∑

i=1

(wi(∆xi − µ(∆xp))
2), (15)

σ2(∆yp) =
1

|Wxp
|

|Wxp
|

∑

i=1

(wi(∆yi − µ(∆yp))
2), (16)

unless |xi ∈ xp| < 30 (i.e., there are fewer than 30 data points in the circular window around
xp). In such cases, we discard the entries and cast that xp position as empty, because there is
not enough tip-motion data to calculate the model values.

A new 3D array MR is constructed with two dimensions matching the sampled images, and
with the values µ(∆xp), µ(∆yp), σ(∆xp), and σ(∆yp) for each xp assigned to four layers in
the 3rd dimension. This array MR contains all the information of the model, but is cast under
the right light source, as described above. To calculate the second array ML of the model, we
mirror MR by flipping the four layers over the x-axis and by multiplying the µ(∆xp) values
by −1. This yields the final tip-motion model arrays, ML and MR.

The values contained in the tip-motion model array MR (i.e., for the right light source) can
be seen in Fig. 16. Figs. 16(a) and 16(c) represent the mean tip-motion vectors µ(∆x) and
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(a) µ(∆x)
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(b) σ(∆x)
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(c) µ(∆y)
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(d) σ(∆y)

Figure 16: The four layers of the tip-motion model array MR, describing tip-motion when the
right light source is triggered. The colormaps indicate the distribution of the IDW means µ
and standard deviations σ of the ∆x and ∆y values at each xy position. The data is mirrored,
time-normalized, smoothed, interpolated, and extrapolated according to the method described in
Section 4.3.2. White patches indicate absence of data. Axes are given in image pixel coordinates.
37.5 pixels correspond to 1 cm in the camera focal plane occurring at the plant. (a) and (b) show
the statistical description of the tip-motion on the x-axis, while (c) and (d) describe motion on
the y-axis. Because the y-axis origin is placed at the top of the image (above the plant), negative
values in colormap (c) indicate the plant tip’s upward motion. In (a), positive values indicate
motion towards the right.
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µ(∆y), Fig. 16(b) and Fig. 16(d) show the standard deviations σ(∆x) and σ(∆y). The standard
deviation values are usually larger than their respective means, showing the large variance in
the dataset. In Fig. 16(c), there is a general trend of growth upwards (negative values on the
colorscale indicate upward motion, as y = 0 is the uppermost pixel) that is especially pronounced
on the far side from the light source. Towards the top-right corner of the data is a concentration
of motion downwards. Both of these features in the data reveal the plant stem bending towards
the light source. Fig. 16(a) indicates that, when the tip is farther from the light source, it
typically moves more quickly towards it. The features visible in these colormaps of MR would be
mirrored horizontally in colormaps of ML. These tip-motion model arrays, ML and MR, allow
for significantly improved and sped up plant simulations, as compared to prior work [44].

Simulation of tip behavior. We begin simulations of plant tip trajectories at a manually fixed
origin (x0, y0). The origin x0 is placed at the horizontal center of the image (x0 = 1296 pixels),
and y0 is placed at the lowest point in the photographs that occurs higher than the edge of the
pot in all experiments (y0 = 1250 pixels, where y = 0 occurs at the uppermost row of the image,
above the plant). We use this (x0, y0) origin as our first simulated plant tip position xt = (xt, yt)
in each simulation run. At each time step of the simulation, we index into the appropriate
array ML or MR depending on the light condition output by the controller, and according to
the current simulated tip position xt retrieve the stored µ(∆xi), µ(∆yi), σ(∆xi), and σ(∆yi).
We compute the next tip position xt+1 by drawing from random distributions according to the
retrieved values, such that

xt+1 = xt +N (µ(∆xi), σ(∆xi)), (17)

yt+1 = yt +N (µ(∆yi), σ(∆yi)). (18)

4.3.3. Controller setup for user-defined targets

As described in [18], our controller is an ANN with four inputs. The inputs are the xy coordinates
of the current plant tip position and the current target position at each time step. These time
steps correspond with five minute discrete intervals in reality. The network has only one output,
which is a binary decision indicating whether the left or right light source will be triggered in
the next time step. When the controller runs in reality gap experiments, an image of the plant
is captured and processed at each time step, acquiring the current position of the real plant tip.
When the controller runs in simulation, the tip-motion model is used to project the current tip
position from the previous.

Definition of the task. In our previous work [44], the controller performed the task of steering
the plant tip serially towards three specific, unchanging targets in xy space. Here, we extend
the work by generalizing the controller, such that the next arbitrary xy target is provided as an
input.

This enhancement allows the controller to direct a wide range of growth patterns for various
applications (e.g., plant shaping, braiding). A new target input to the controller is triggered
once the current target x∗

i is reached by the plant tip xt, such that

|xt − x∗
i | ≤ 12 ∨ |yt − y∗i | ≤ 12 ∨ |y∗i − yt| ≥ 40. (19)

Using this approach of analyzing target proximity separately along the two axes eliminates the
speed problem posed by calculation of Euclidean distance, at a time-critical step. When triggered,
a new target is generated according to the method described below.
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Target generation. The task of the evolved controllers is to steer the plant tip to arbitrary
targets that can change at run time. Targets would be user-defined in an application, hence,
for benchmarking we automatically generate a varying number of arbitrary targets for every
individual controller and evaluate its behavior according to those target sets. Besides the ob-
jective of targets being reachable by the plant in principle, we have two competing priorities in
our generation method. On the one hand, because we evaluate each controller with multiple
simulation runs (each with varying numbers of targets), the target sets should have comparable
statistical properties, such that the evaluation of controller performance is not biased by differ-
ences in targets. On the other hand, the generated targets should be diverse enough to ensure
that the evolved controllers will be general. We approach these objectives by using a method
similar to our simulation of tip-motion, but instead of drawing random values from a normal
distribution parameterized from the tip-motion model array, we select values corresponding to
a given cumulative probability at each pixel. As such, we employ a data-driven probabilistic
target generation method, described below. A new target is generated once a previous target is
reached. The position of the new target is defined based on a given probability for reachability
of the point and the desired relative distance along the trajectory from the tip position to the
edge of data in the array.

The function for target generation (see Algorithm 1) receives the position of the plant tip at
the time of target generation (tipx, tipy), and the tip-motion model arrays ML for left light source
MR and right light source. The function also uses a set of parameters that can be changed by
the user according to the desired level of reachability of the targets, preach, the level of desire for
switching direction when moving from one target to the next, pswitch, and the relative distance
dtraverse along the projected trajectory where we fix the target, the maximum y position ymax of
any target in the system, and lastly, the direction rlast in which the prior target was generated.
In the implementation used here, we draw uniform random values for preach from the half-open
interval [0.58, 0.72) and for ptraverse from [0.5, 0.7) every time a new target is generated. The
value of pswitch is fixed at 0.75.

In order to generate a trajectory in a certain direction, we use the µ(∆yi) and σ(∆yi) from
the tip-motion model array of the respective light source C (left light, C = 0, right light, C =
1). Based on that, we calculate a trajectory of positions that are reachable with the desired
probability preach. The set of positions are traversed in order to choose a target with the desired
distance from the previous one based on dtraverse. Starting from the last target, we iteratively
generate a set of potential target positions xp where each point is adjacent to the previous one,
such that

xp+1 =

{

xp − 1, if C = 0
xp + 1, else

, (20)

yp+1 = yp + µ(∆yi)− zσ(∆yi). (21)

where z is the multiplier for the standard deviation σ(∆yi) associated to position (xp, yp). The
probit12 function Φ−1 is used to convert the desired cumulative probability preach into the corre-
sponding value z = Φ−1(preach) from a standard normally distributed variable, that we can then
use to get the according value for any normal distribution (by multiplying with its σ).

The resulting list of pixel coordinates is defined as the trajectory from which a target will
be selected (cast as border trajectory b in Algorithm 2). The target is chosen by traversing this
series of pixels to reach the distance dtraverse, which gives the relative distance from the previous
target (see Algorithms 1 and 2 for further details).

12The Scipy Python library is used to apply the probit function; that is the quantile function associated with
the standard normal distribution; it is the inverse of the cumulative distribution function (CDF).
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ALGORITHM 1: Target Generation

Data: tip position (tipx, tipy), tip-motion model arrays ML, MR, given probability for
reaching the target preach, given probability to switch direction of target generation
(left or right of tip) pswitch, the given desired relative distance dtraverse between the
old and new target positions, the Boolean rlast that is true when the previous
target was generated towards the right, the maximum height for target ymax

Result: target position (targx, targy), Boolean cr (true if the new target was generated
towards the right)

r ← uniform random number in [0, 1);
b← empty list of border pixel coordinates;

if r < pswitch; /* i.e., we switch direction */

then

if not rlast; /* i.e., last target was generated towards the left */

then

cr ← True;
MC ←MR; /* pick the array for right light */

else

cr ← False;
MC ←ML;

end

else

if rlast then
cr ← True;
MC ←MR;

else

cr ← False;
MC ←ML;

end

end

b← getTrajectory(tipx, tipy,MC , preach); /* call function getTrajectory() */

blen ← length of b; /* number of tuples (bx, by) in list */

if blen > 0; /* i.e., plant tip was at valid entry of model array */

then

bindex ← floor(blen · dtraverse); /* index of target tuple according to dtraverse
*/

(targx, targy)← b[bindex] ;

if targy < ymax; /* if target is higher than allowed */

then

(targx, targy)← the first tuple from b that is lower than ymax;
end

else
generate a random target in the central data area (with targy lying above the tipy and
below ymax);

end

return tuple (targx, targy) and Boolean cr
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ALGORITHM 2: Function getTrajectory()

Data: tip position (tipx, tipy); µ(∆yi) and σ(∆yi) from the tip-motion model array MC

for light condition C (Boolean value, equal to 1 for right light); the probability for
reaching a target preach

Result: list of tuples (bx, by) border trajectory b

z ← Φ−1(preach); /* probit function */

b← empty list of border pixel coordinates;

if C is True; /* i.e., right light is lit */

then

m← 1; /* next target right */

else

m← −1; /* next target left */

end

xp ← tipx;
yp ← tipy;

while not (µ(∆yi) == ‘NaN’); /* i.e., we have data for that location */

do

append the tuple (xp, yp) to the list b;

xp ← xp +m;
yp ← yp + µ(∆yi)− z · σ(∆yi); /* using the quantile on σ */

[µ(∆yi), σ(∆yi)]← aisle of Mc at row m = round(yp) and column n = round(xp);

end

return the list of tuples b constituting all points approximately reachable with
probability preach under the given light condition C
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Table 1: Used NEAT parameters.

Parameter Value Parameter Value

PopulationSize 50 CrossoverRate 0.5
DynamicCompatibility True MutateWeightsProb 0.9
YoungAgeTreshold 15 YoungAgeFitnessBoost 1.0
OverallMutationRate 0.5 WeightReplacementMax 5.0
MinSpecies 5 WeightMutationRate 0.75
MaxSpecies 25 Elitism 0.1
SurvivalRate 0.6 MutateAddNeuronProb 0.04

Evolutionary approach. We evolve ANN controllers using the portable Python library Multi-
NEAT [5], which is based on NeuroEvolution of Augmenting Topologies (NEAT) [39]. NEAT is
an efficient evolutionary algorithm that begins with a random population of ANNs with mini-
mal structure (i.e., no hidden layers), then applies complexifying methods to modify the weights
and the network structure. We use here the set of NEAT parameters in Table 1, based on the
parameters that have shown successful performance in our previous work [44].

At each time step t, the xy coordinates of the current plant tip position xt = (xt, yt) and
current target position x∗

i = (x∗
i , y

∗
i ) are input to the ANN. The ANN then outputs the binary

light source state Ct, determining whether the left light source (Ct = 0) or the right light source
(Ct = 1) is activated. The current system configuration (x, C)t influences the plant’s behavior
(growth and motion) during that time step. Therefore, in the case of simulation, the tip-motion
model is used to project the next tip position xt+1 from the current system configuration. In
reality gap experiments, an image of the plant is captured after the time step is complete, and
the processing method described in Section 4.2.1 is used to detect the plant’s new tip position.
This process is repeated at every time step until the tip’s yt value is equivalent to roughly 20
cm in height. This allows the plant enough growth space to reach between two and six arbitrary
targets generated by the method described above. It also allows the reality gap experiments
to be performed in a relatively short period of time (approximately 72 hours each), such that
the overhead is manageable for an engineering task. In order to evolve ANN controllers to steer
the plant tip to generalized targets, we define two alternative fitness functions, F1 (a behavioral
fitness function) and F2 (an aggregate fitness function), according to the classification in [31].

First, we define the behavioral fitness function F1. Since the motion control acts mainly along
the x-axis while the change along the y-axis is mostly due to growth, we measure the distances
traversed towards every new target from the previous target along the x-axis. For that, for every
target i ∈ {1, 2, ..., n} we define the instant rewards r(t), based on the number N of total targets
and the distance ∆xt traversed in every time step t:

∆xt = xt − xt−1, t ∈
{

t | y∗i−1 ≤ yt < y∗i
}

, (22)

r(t) =











∆xt, if xt < x∗
i

−∆xt, if xt > x∗
i

|∆xt|, if xt = x∗
i

, (23)

where (xt, yt) is the position of the tip at time step t and (x∗
i , y

∗
i ) is the position of the target i.

(x∗
0, y

∗
0) is the starting position of the tip. The sum of the rewards for each target is defined as

Ri =
∑

t

r(t), t ∈
{

t | y∗i−1 ≤ yt < y∗i
}

. (24)
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The controller is rewarded Ri when the tip transitions between the old and the new targets.
If the tip starts out of this region we make a correction in the value of Ri by decreasing it by
x∗
i − xt where xt is the starting point of the tip for the corresponding target. The reason for

this correction is to prevent solutions where the tip compensates for missing a target by getting
extra reward for the next target, through starting its motion towards the new target at a farther
distance. The behavioral fitness F1 is then computed as follows:

F1 =

∑N

i=1 Ri
∑N

i=1 R
max
i

, (25)

where Rmax
i = |x∗

i − x∗
i−1| is the maximal reward that a controller can theoretically achieve for

every target i, and N is the number of targets. During every epoch of the artificial evolution,
we evaluate each controller in 15 independent plant growth simulations (with distinct generated
targets) and select the minimum fitness as the controller’s final fitness.

F1 is a behavioral fitness function; namely, it has prior knowledge about possible useful
behavior leading to a potential solution. It uses this knowledge to continuously reward/punish
the controller according to its behavior.

To define the second fitness function F2, we use the Euclidean distance between the current
plant tip position (xt, yt) and the considered target i, where

disti(t) =
√

(x∗
i − xt)2 + (y∗i − yt)2. (26)

A controller receives a reward of R = 1 if it reaches the vicinity r of the target, at any time step
t ∈ T when the plant tip is positioned between the heights of the current and former target, such
that

Ti =
{

t | y∗i−1 ≤ yt < y∗i
}

, (27)

Ri =

{

1, if ∃t ∈ Ti, disti(t) ≤ r

0, else
. (28)

F2 is then defined according to the reward values, as

F2 =
1

N

N
∑

i=1

Ri . (29)

Similarly to F1, for the controllers evolved using F2, we evaluate each controller according to
15 independent target sets and plant growth simulations. However, instead of selecting the
minimum, for F2 we calculate the average fitness of the 15 runs, setting that average as the
controller’s final fitness.

In contrast to F1, the F2 is an aggregate fitness function, therefore the completion of the
task is the only metric for evaluation, regardless of the procedure leading to the solution. Here,
the controller is only rewarded when the tip approaches a target (see eq. 28). Therefore, F2 is
less complex than the behavioral F1, but the lack of guidance in F2 could lead to bootstrap-
ping problems, slowing down the evolutionary process [10]. We do not encounter this potential
slowness, by virtue of the array approach to modeling and simulating growth (see Section 4.3.2),
which greatly speeds our evolutionary process. This allows us to investigate the aggregate fitness
function approach seen in F2.
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(a) Fitness of best controller per generation.
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(b) Functional boxplot.

Figure 17: Evolution of controllers selected by fitness function F1. Shown here are 50 inde-
pendent runs. (a) Boxplots give the first quartile, the median, and the third quartile, while the
whiskers are 1.5 times the interquartile distance added to the box. Outliers are shown separately.
(b) Because the generation-fitnesses of a single run are independent of each other, we can use
functional boxplots. The figure shows the “median-function” in black, while the “quartile” and
“whisker functions” color areas dark and light gray respectively. The “whisker functions” are 3
times the interquartile distance added. A function is considered an outlier and drawn separately,
if it is outside the range at any single generation.
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(a) Evolved controller using F1, success = 92.3%
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(b) Evolved controller using F1, success = 91.0%

Figure 18: Trajectories of the simulated plant tip for two successful controllers using F1
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4.3.4. Results of evolved controllers

As described in [18], first, we report the results of evolving controllers using the tip-motion model
(see Sec. 4.3.2) in simulation. We test our previously mentioned two fitness functions (F1 and
F2) in two sets of 50 evolutionary runs, 500 generations each. Second, we report the performance
of the evolved controllers in plant experiments (i.e., discuss the existence of reality gap).

Evolution of controllers in simulation Compared to [44], the optimized procedure allowed,
but also required, the stricter evaluation scheme of testing each individual controller on 15
simulation runs. The current model includes substantially more (and locally inhomogeneous)
stochasticity, better reflecting the plants’ behavior. First, we show the results for the behavioral
fitness function F1. Fig. 17 shows boxplots and functional boxplots of 50 independent runs that
each contain 500 generations. We can clearly see that, unlike in the previous work [44], we can
much better guarantee that the NEAT process finds a solution to this more complex problem.
By generation 200, we have reached convergence, while the majority of populations evolved a
solution within the first 50 generations. Counterintuitively, feeding the ANN the current target
as an additional input parameter makes this task much easier, as the network can learn the
correlation between the input and output parameters. Fig. 18(a) shows the worst performance
of 15 plant simulations of the controller we selected to guide the plants across the reality gap.
We chose it because it had the highest fitness of all controllers, even though we are aware that
there is a lot of stochasticity involved. The strategy is straightforward: trigger the light source
that leaves the target in between the light source and the plant tip. This leads to the plant being
guided below the target as fast as possible, and then kept there (by alternating the lights) until
it grows to reach the target. This behavior is particularly pronounced in Fig. 18(b), where the
tip sometimes moved down, giving a thicket of trajectory very similar to one of our reality-gap
experiments13.

Second, we show the results for the aggregate fitness function F2. The results from 50
independent runs are shown in Fig. 19. Following the median in Fig. 19(a), the fitness increases
steadily and saturation is achieved after 225 generations. Notice that the median shows step-wise
increase/decrease behavior which reflects the properties of an aggregate fitness function (explicit
reward when a target is achieved).

Fig. 22 shows the plant tip trajectories resulting from two successful controllers. The strategy
evolved is the same as that employed by controllers selected with F1 (see Fig. 18). In Fig. 20(a),
five targets were generated and the controller could score 85.7% success. Here, the controller
could steer the plant tip towards four targets successfully, but fails to approach the last target due
to stochasticity in simulated plant behavior. In Fig. 20(b), another four targets were generated
and the controller successfully guided the simulated tip towards all of them, giving a score of
100%.

Performance of controllers in plant experiments In a final set of plant experiments,
one of our controllers (see Fig. 18(a)), that was successfully evolved in simulation, is tested in
reality with actual bean plants. It is one of the controllers evolved based on the behavioral
fitness function F1. This is a typical attempt to investigate the reality gap problem [23]. In
our previous work [44], we confirmed the possibility to bridge the reality gap for a task with
three predefined target points (x∗

1 = (3, 6), x∗
2 = (−5, 9) and x∗

3 = (−1, 13.5)). Here, we test
the performance of our evolved controller first in a similar scenario (fixed targets experiments).
Second, we extend our reality gap investigation by including plant experiments with dynamically
generated targets (dynamic-targets experiments) as described in Sec. 4.3.3. One of these plant

13Find a video of a fixed-targets and a dynamic-targets experiment at: https://vimeo.com/205469308
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(a) Boxplot of best fitness per generation.
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(b) Functional boxplot of best fitness per generation.

Figure 19: Performance of the evolutionary process over generations for 50 evolutionary runs.
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(a) Evolved controller using F2, success = 85.7%
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(b) Evolved controller using F2, success = 100%

Figure 20: Trajectories of the simulated plant tip for two successful controllers using F2
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(a) Trajectories from previous work,
fitness = 72.6%

(b) Trajectories from current work,
fitness = 95.17%

Figure 21: Trajectories of the detected plant tips in fixed targets experiments.

growth experiments takes up to 72 hours, therefore, we parallelized our experiments and tested
the controller concurrently in two separate bio-hybrid experiment setups.

On the one hand, the fixed-targets experiment was repeated three times, scoring a fitness of
95.17% on average. Hence, we observe an average 28.7% increase in performance in comparison to
our previous work. In Fig. 21, we show the trajectories of the guided plant tip from our previous
work (Fig. 21(a)) side by side with the trajectories from our current work which scored a fitness of
95.17% (Fig. 21(b)). On the other hand, the dynamic-targets experiment was repeated two times,
scoring a fitness of 91.25% in average. In Figs. 22(a) and (b) we show the trajectories of the guided
plant tip from the two dynamic-targets experiments scoring fitness values of 92.6% and 89.9%
respectively. In comparison to the experiments in simulation, we notice similar behaviors of the
actual plant steered by the controller. The controller makes the tip of the plant approach every
target precisely from below (xt = x∗

i ). Then it maintains the horizontal coordinate xt during
the plant’s growth by alternating between the two light sources until the target is reached. This
generates a series of back and forth movements (e.g., in Fig. 22(b) between the second and third
target14. When the target is finally approached and switched, the controller rotates the plant
appropriately to the opposite side (where required) beneath the next target.

Both the superficial observation of the plant behavior, that is, the effects of the control and the
measured fitness in the plant experiments indicate that the controllers transferred successfully
from simulations to reality without being changed. Hence, we have successfully bridged the
reality gap in this specific setup. This is a very encouraging result because it demonstrates
possible future pathways for this research. While the plant experiments are slow and expensive,
our modeling approach allows to quickly evolve controllers with high transferability. Whether
this feature scales up to scenarios of higher complexity needs to be shown.

14Find a video of fixed-targets and dynamic-targets experiments, at: https://vimeo.com/205469308
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(a) Dynamic-targets experiment #1,
fitness = 92.6%

(b) Dynamic-targets experiment #2,
fitness = 89.9%

Figure 22: Trajectories of the detected plant tips in dynamic-targets experiments.
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Figure 23: Desired user-defined Z-shaped pattern.

4.3.5. Distributed algorithm in the PBDW

Finally, we describe the control algorithm used for the PBDW experiment. More details about
the PBDW setup are presented in deliverable D1.2 Evaluation of mechatronics prototype of the
robotic symbiont including supporting software.

As described in [45], we define two states for the robotic nodes: guiding, the node emits only
blue light to attract the plants and detects the proximity of approaching plant tips (proximity
sensors are on); and feeding, the node emits only red light to support the plants’ photosynthesis
(proximity sensors are off, no plant tip detection). Then, we investigate the ability of our
distributed and decentralized robot system to grow plants in predefined shapes. Every robotic
node in the system knows its location in the diagrid map and the required final pattern (z-shaped
pattern, see Fig. 23). Only one node is allowed to be in the guiding state at any given time.
When the experiment starts, one node in the first level sets its state to guiding according to the
predefined pattern. Once the node detects an approaching plant, it notifies its direct neighbors
and switches its state to feeding. According to the pattern, the relevant node in the next level
will switch its state to guiding. This process is repeated until the node in the final level detects
an approaching plant.
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5 Vascular morphogenesis as a model of self-organized growth in a bio-

hybrid system

5.1 Introduction

Growth is a ubiquitous phenomenon in nature. Living organisms grow and develop their mor-
phologies based on their genetic information, conditions of their environment, and the rules of
physics and chemistry governing the dynamics of their world [17]. Morphology of biological
systems develops over time in a process of growth changing their body and nervous system.

Here we are interested in the growth of the flora robotica bio-hybrids. The algorithm that is
introduced here concerns the growth of the robotic side of the bio-hybrid in response to changes
in the environment including the plant side and humans. The idea is to self-organize the growth
of the structure in a distributed and balanced way. The distributed morphogenesis control
algorithm runs independently in every module of the robot. The local controllers self-organize
the process of growth based on local interactions with each other and with their environment,
deciding how the growth should continue such that the global objectives are met.

Our morphogenesis approach is based on inspiration from the mechanisms of branching and
branch competition in plants. Various branches of the same plant act as agents exploring their
local environments and finding preferable regions and resources (e.g., light). Plants grow and
extend their branches and develop new ones. Different branches compete for common global
resources (e.g., water) and winning is biased towards the branches that find better local re-
sources [16]. The information collected by the branches are used to find preferable regions of the
environment leading to new shapes of the organism that facilitates access to more resources in
a cascading way. In a more abstract view, branches are seen as members of a swarm competing
for limited shared resources and it leads to new formations of the swarm that result in more
overall resources for the system as a whole. Water, nutrients, and sugars are transported to dif-
ferent parts of a plant through the plant’s vascular system. Evidence suggests that the vascular
system not only transports materials needed for survival of the plant, but it is also a long-range
communication channel that enables the plant to adapt to changes [32].

There are several biological models of plants, for example, modelling transportation of ma-
terials via vascular systems and incorporating it into growth models [50]. While the models de-
veloped in the field of plant science are mostly complex, focusing on details of particular plants,
here we are interested in a simple decentralized model that captures the general concepts of
growth such that it can be easily implemented in a limited robotic system. We are inspired from
development of vascular systems in plants and their effects in the growth of different competing
branches in an abstract level. We propose a novel controller called “Vascular Morphogenesis
Controller (VMC)” for guiding the morphology of structures based on competition and resource
balancing. The method differentiates between the information level (algorithmic logics of growth)
and physical level (actual structure) in order to keep generality and broad scope of usability for
the morphogenesis algorithm. The actual morphology of a structure being developed by this
method is the result of parameters of the algorithm, and the resource sharing and competition
mechanisms, as well as the physical realization of the system and their interactions with the envi-
ronment on both informational and physical levels which leads to diverse possibilities of dynamic
forms.

The algorithm is described in this chapter in the following sections. For the physical realiza-
tion of a growing system, we have used a simulated modular robotic structure based on a physical
modular robot and we have used it for evolving and developing various example structures in
different conditions. The simulation results are reported in deliverable D3.1 Representations and
design rules.

Deliverable D2.2 Page 37 of 47



EU-H2020 FET grant agreement no. 640959 — flora robotica

5.2 Related work

In biological studies, evolutionary developmental biology (EvoDevo) [22, 46] is the approach
towards investigation of self-organized processes of growth by looking into embryogenetic de-
velopment and differentiation of cells. Growth and morphogenesis is also a topic of interest in
artificial and robotic systems, in particular in evolutionary robotics [1] and modular robotics [30].
In such artificial systems, as in their natural counterparts, patterns and structures are a result of
self-organization. The different components interact with each other and with the environment
leading to high diversity and adaptivity [17, 3, 48]. Self-organizing morphogenesis is usually im-
plemented by using indirect encodings where the encoded parameters are subject to evolutionary
algorithms for optimization. The body of the robot or the controller structure develop over time
based on a set of parameters encoded in the genotype, a set of rules determining how those
parameters drive the development, and the inputs to the system resulting from the interactions
between the system and its environment (e.g., [36, 14, 49]).

While most of the work in the context of robotic morphogenesis is done in simulation, there
are also a number of attempts towards real physical hardware [15, 2]. Many of the robotic
approaches are strongly inspired from the concepts of real cell development, for example, by
implementing variants of gene regulatory networks and the concepts of cell division, migration
and death [8]. Other methods (e.g., [20, 36]) use the more abstract generative encodings, such as
different variances of L-systems [27]. Generative encodings start with a basic unit (a seed) and
a set of context-free developmental rules driving the development of the morphology. In [43] the
L-system is extended by adding a swarm of interacting agents and a swarm grammar defining
their dynamics. Another swarm-based morphogenesis model is the embryomorphic model [12]
that implements the concepts of gradient diffusion for positional information, gene regulatory
networks for transformation of cell types and cell division. The model draws a separation between
the physical level and the information (logical) level of the growing system in order to keep
the generality. In [24] a morphogenesis system based on Cellular Automata (CA) is defined
with different types of cells including transport, barrier, and normal cells where the transport
cells stay connected with each other in order to serve the normal cells during growth. Several
different morphogenesis approaches are reviewed in [13]. The morphogenesis methods of structure
development have also been applied to the field of computer networks. For example, in [38], a self-
organized peer-to-peer overlay network develops in a computer network by using an algorithm
inspired from fungal growth that maintains communication between nodes and demonstrates
robustness against network failures.

5.3 Inspired by plants: competition for vessels

Vascular strands transport water and minerals from roots and sugars produced at the leaves to
all over a plant. The vascular structure of a plant is dynamic as the vessels in different branches
are reinforced or degenerated over time based on their status. Research in plant physiology
[42, 34] suggests that different branches of a plant compete for more vessels. For example,
experiments [34] with two-shoot pea seedlings, demonstrate that casting shadows on previously
equally-placed shoots, for example, with equal access to light, causes the decrease and finally
stopping of the shaded shoot while the other shoot grows faster and becomes dominant (see
Fig. 24). This dominance can be reversed by restraining the dominant shoot that is located in
light.

A hormone called auxin is produced at the tips of a plant and flows back via plant vessels
towards the roots. Auxin production is influenced by the local conditions of the tips (e.g., access
to light). One of the effects of auxin is to make the bundles of unspecialized stem cells, called
cambium cells, which are located near the vascular tissues to transform into vessels. This is
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(a) (b)

Figure 24: If one of the two equal branches (a) is in a comparatively preferable environmental
condition (e.g., more light), it develops more vascular tissues and grows more vigorously (b).

especially interesting considering the fact that limited common resources (e.g., water) need to
be distributed between different branches of a plant via their vessels. More flow of auxin at a
branch, leads to more vessels, and thus more transportation of the common resources to the
branch. More resources mean more growth and perhaps positioning of the branch’s tip at even
better locations generating a positive feedback loop. On the other hand, as common resources
are limited for a plant, the distribution of the limited resource between all branches creates a
negative feedback that pushes towards homeostasis of the plant.

5.4 The algorithm: Vascular Morphogenesis Controller

By taking inspiration from the competition between branches of a plant for more vessels and con-
sequently more resources, the Vascular Morphogenesis Controller (VMC) algorithm is designed.
The idea is to let the growable parts of a structure compete for a common resource of growth
via a network of pathways that are dynamic based on interactions and local conditions of the
branches. For that, VMC is defined as an acyclic directed graph (tree) that is distributed over
the physical growing structure (see Fig. 25). Initially, the graph consists of a root node and a
number of potentially growable nodes attached to the root making the initial leaves of the graph.
Growth can only happen at the leaves of the graph. Each leaf assesses local conditions and
accordingly produces a value, namely Successin (S) in analogy to Auxin in plants. The Successin
produced at the leaves flows back to the root and on its way, it regulates the vascular pathways
of the resource (V) – in analogy to plant vessels. The pathways are then used to distribute a
limited resource (R) between the leaves. The limited resource is initiated at the root and flows
towards the leaves being split at every branching point according to the thickness of the vascular
pathways. The leaves that gain more share of the resource are more motivated to grow. When a
leaf grows, new leaves are generated as its children, and hence the old leaf turns into an internal
node of the graph.

A VMC includes a set of parameters that influence its dynamics. At the leaves, a set of
parameters along with the sensor values determine the rate of Successin production. The amount
of Successins can be altered in their way from the leaves to the root, based on a set of parameters
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Figure 25: A VMC as a whole is an acyclic directed graph that is distributed on the growing
physical structure. The leaves of the graph are the potential places for growth. The leaves
produce Successin (S) that flows back towards the root and on its way regulates the thickness
of the vessels (V). The vessels are pathways that transport the limited resource (R) from the
root to the leaves. The more a leaf gets the resource, the more it is motivated to grow. Sensors
and constant parameters of the algorithm contribute to the production and flow of the Ss and
regulation of the Vs at every node.

and the sensor values at the internal nodes. The regulation of the vascular pathways at the
nodes is based on the value of Successin passing the node as well as a set of parameters. The
parameters of the algorithm are identical for all the nodes and can be subject to optimization
(e.g., evolutionary algorithms as here) in respect to given objectives for the growing structure.

Every node of VMC runs independently and updates its state variables in parallel to other
nodes. The dynamics of the variables, that is, the production of Successin at the leaves and the
Successin flow at the internal nodes, the thickness regulation of the vascular pathways, and the
distribution of the common limited resource are summarized in Fig. 26.

Successin Si is produced at a leaf i based on the local sensor values and parameters of the
algorithm as follows:

Si := ωconst +
∑

s∈sensors

ωsIs (30)

where ωconst is a parameter representing the production rate of Successin at the leaf independent
of the sensor inputs. Is is the input from sensor s and ωs is a parameter determining the weight
associated with the input s.

The Successin flows towards the root. The value of S at the internal node i is updated based
on the sum of the Successin values arriving from all the children of the node, local sensors, and
constant parameters:

Si := g(ρconst +
∑

s∈sensors

ρsIs)
∑

b∈branches

Sb, (31)

where in the current implementation g(x) = (1+e−10x+5)−1. The ρconst and ρs are transfer rates
influencing the rate of reduction in the Successin flow passing a node. ρconst is an independent
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Figure 26: Dynamics of Successin flows, vessel thickness, and resource flows.

rate and ρs is the rate associated with a sensor input s. The values of the parameters in this
equation contribute to the effect of the distance from the root to the share of the resource reaching
the leaves (recall that the values of S passing the nodes adjust the thickness of vessels (V ) and
consequently influence the distribution of the limited resource between the leaves).

The following equation represents how a vascular pathway Vi is adjusted every time step
based on the current value of the Successin passing through it:

Vi :=

{

min(Si, (1− c)Vi + β + α(Si − Vi)) if Si ≥ Vi

max(Si, (1− c)Vi) if Si < Vi

, (32)

where c is a constant decay rate of the vessels, β is the constant addition rate, and α is the factor
of adjustment. The equation states that if the current value of Si is more than the current value
of Vi, Vi is likely to increase (depending on the values of the parameters c, β, and α) up to the
value of Si. Otherwise, Vi decreases by a constant decay rate down to the value of Si. Note that
the parameter values in this equation influence the competition between different branches by
changing the significance of different values of S in relation to the constant decay and addition
rates.

Finally, the limited common resource initiates at the root node and flows towards the leaves.
The value is constant at the root. The resource reaching a node m (Rm) is simply divided
between its children based on the current value of their vessels:

Ri := Rm

Vi
∑

b∈children Vb

, (33)

where Ri is the resource value at the child i of the node m, and children is the set of all children
of the node (see Fig. 26 for a summary).
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Figure 27: Kilobots growing towards the light source (left side) using a simple probabilistic
approach. Percentages represent the success measurement on the robots’ presence within the
desired area (red triangle) [11].

Modification: The algorithm is then improved in order to incorporate parameters that better
enable the regulation of competition between the branches of the same nodes. In the modified
version of the algorithm, the the vascular pathway Vi is updated by using the following equation:

Vi := Vi + α(S
f(sensors)
i − Vi), (34)

f(sensors) := βconst

∏

s∈sensors

(1− βsIs), (35)

where α is the adjustment rate of the vessels. βconst and βs are the constant and sensor related
parameters that influence competition between difference branches by changing the significance
of different values of S for updating the V . The βconst provides a base value which is modified by
the values of the input sensors and their related βs. Using the modified version, the competition
is easier to regulate either by setting constant parameters or by sensor-dependent dynamics.

In future work, we are planning to use the VMC to control the growth of our braided struc-
tures. In a preliminary study, however, we may showcase the algorithm for the assembly and
disassembly process among a swarm of Kilobots. The experiment will be on a 2-d surface and
light will be used to direct the growth. Earlier, we have shown how a probabilistic adaptive
growth process can be implemented on a swarm of 50 Kilobots [11] (see Fig. 27, also see deliv-
erable D2.1).

5.5 Conclusion

A novel distributed morphogenesis controller, called Vascular Morphogenesis Controller (VMC),
is proposed here. The controller is inspired from the vessel dynamics and branch competition
in plants and is used for driving the morphology of artificial structures. The development of a
structure directed by VMC is dynamic and adaptive to environmental changes and environmental
constraints. The algorithm is implemented in a growing modular robot in several different setups
described in deliverable D3.1 Representations and design rules.
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6 Conclusion

In this deliverable we have reported various and important results. The VMC approach was
proposed for maintaining growth and self-assembly of artificial structures and allow for imple-
mentations in distributed systems. The VMC is inspired the growth of plants, which allows us to
implement the principles of plant morphology development also in the case of artificial structures
in bio-hybrids. A controller of plant growth and motion was presented that allows to steer plants
towards user-defined spatial targets. It is more efficiency and more sophisticated compared to
the version presented before in D2.1 (M12). Whether this controller is feasible for other species,
conditions and scales, will be tested in the future.

The PBDW experiment gives a good overview of the future work of flora robotica. The utiliza-
tion of phototropism for guiding the growth of beans on a diagird structure is an early bio-hybrid
setup. As mentioned in Sec. 2, plants affecting procedures are required to be investigated in more
detail and subsequently introduced into bio-hybrid. Integration of plants and robots to achieve
spatial targets is a great challenge and additional tools combined with advanced controllers for
plant shaping will be needed. Future implementations of plant physiology sensors will provide
a relevant bridge between living organisms, that are affected by robots, the environment, and
human beings. The development of these sensors is in progress.

Investigation on plant signaling in parallel to the development of advanced sensors for sig-
naling, such as electrophysiology sensors, will help to enable more sophisticated plant-robot
interactions that go beyond the recent stage of bio-hybrids.

In reference the word ‘final’ in the title of this deliverable, we can consider the plant shaping
controller approach and the VMC approach as final, actually ready-to-use products. However,
our ambitious goals in flora robotica will require us to further improve them, adapt them to certain
application scenarios, and to investigate their performance. Also in the case of procedures for
plant treatment, we are able to predict certain effects of plant affection stimulations, but still
more experimental work is needed to find applicable dependencies between flora robotica robots
and possible plant responses.
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Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Com-
putation, 17(1):122–145, 2013.

[24] Taras Kowaliw and Wolfgang Banzhaf. Mechanisms for complex systems engineering
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