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ABSTRACT
Bio-hybrid systems—close couplings of natural organisms with
technology—are high potential and still underexplored. In existing
work, robots have mostly influenced group behaviors of animals.
We explore the possibilities of mixing robots with natural plants,
merging useful attributes. Significant synergies arise by combining
the plants’ ability to efficiently produce shaped material and the
robots’ ability to extend sensing and decision-making behaviors.
However, programming robots to control plant motion and shape
requires good knowledge of complex plant behaviors. Therefore,
we use machine learning to create a holistic plant model and evolve
robot controllers. As a benchmark task we choose obstacle avoid-
ance. We use computer vision to construct a model of plant stem
stiffening and motion dynamics by training an LSTM network. The
LSTM network acts as a forward model predicting change in the
plant, driving the evolution of neural network robot controllers.
The evolved controllers augment the plants’ natural light-finding
and tissue-stiffening behaviors to avoid obstacles and grow desired
shapes. We successfully verify the robot controllers and bio-hybrid
behavior in reality, with a physical setup and actual plants.

CCS CONCEPTS
•Theory of computation→Evolutionary algorithms; •Com-
puting methodologies → Neural networks; • Computer sys-
tems organization → Evolutionary robotics;

KEYWORDS
bio-hybrid system, natural plants, decision making, evolutionary
robotics, genetic algorithms, neural networks
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1 INTRODUCTION
Recent developments in additive manufacturing (3D printing) and
robotics open up techniques to produce objects of increasing size
and variety, such as mugs, chairs, or even houses. Research on com-
plex systems and evolvable hardware could interpret this produc-
tion process as a growth process, such that printing an object like a
house could be adaptive to unanticipated changes in the structure
or environment. As an objective of the project flora robotica [11, 12]
we investigate methods to conduct additive manufacturing with
bio-hybrids—that is, mixed societies of robotic and biological sys-
tems. Our objective is to use natural plants to grow desired shapes
by controlling them with robotic devices. From the perspective of
developmental systems, we replace artificial substrates with a natu-
ral system, both in terms of models and physical implementation.
We can then exploit features of natural plants, such as adaptive
behavior and the (almost free) addition of material by growth.

We expect challenges due to the real-life complexity of biologi-
cal systems, and their combination with evolutionary robotics to
automatically generate appropriate robot controllers. A downside
of natural growth is its slow speed, which requires simulation of
the growth process for genetic algorithms to be applied. Another
challenge is that holistic models of plant growth are not readily
available, so we develop our own task-specific models. In summary,
we realize a truly interdisciplinary approach with a rather complex
tool chain, using evolution and machine learning to control plant
phototropism—the directional behavior of motion and irreversible
growth towards light.

First, instead of relying on a designed plant model, our stem stiff-
ening and motion model is learned from experiment data recording
plant behavior in the presence of certain light stimuli patterns. We
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aim to capture the complex temporal dynamics of plant stiffening
and motion through a particular class of recurrent neural networks
called Long Short-Term Memory (LSTM) [13]. The hypothesis is
that this approach will allow the model to capture the dynamics of
a particular plant to a high enough degree to serve as a forward
model that can guide the evolutionary search. Given this plant
model we then apply methods of evolutionary robotics to evolve in
simulation controllers of dynamic light stimuli for the given task of
obstacle avoidance. Finally, we address the challenge of the reality
gap by showing transferability of the simulated evolved controllers
back to the real world.

Our focus is on setting up this rather complex toolchain, so the
complexity of the task is relaxed in this early stage of research
in the field. The task is to grow a plant collision-free around an
obstacle and towards a target (bio-hybrid obstacle avoidance). Even
this simple task brings added complication to obstacle avoidance ,
as lower parts of the plant still need to avoid collisions later in the
run, and we cannot only focus on control of the plant tip.

In our evolutionary robotics approach we evolve artificial neural
networks (ANN), which may seem at first glance an overly complex
tool for this supposedly simple control task. However, we want
to evolve controllers that are adaptive to the environment and to
configurable tasks. Additionally, ANN is one toolchain approach
that enables scaling up to more complex plant-control problems
(e.g., 3D shapes, multiple stimuli) in the future. The workflow of our
approach starts from preliminary plant experiments to gather data
about how the plant behaves in general. The data is used to train an
LSTM network that we use as simulator in our evolutionary runs.
We evolve ANNs as controllers of light stimuli, which later in our
reality experiments control the behavior of the real plant.

2 BACKGROUND AND RELATED WORK
Forming bio-hybrid societies by bringing biological and artificial
agents together is a growing field. Robots can interact with natural
organisms, both adapting their own behaviors and influencing those
of the living system. Several mixed societies have been built where
autonomous robots influence the behavior of groups of animals [10,
25]. While animals are very mobile, plants are more limited in
motion, growing and adapting over time. In our previous work, we
show that robots can closely interact with plants to change their
environmental stimuli according to desires of humans [14, 22, 23].
As robot controllers and hardware can be designed to interact with
their surroundings, they can meaningfully be combined with plants,
extending their natural capabilities to grow efficiently in dynamic
environments and adapt to external changes [8].

Common bean plant: behavior and growth. A relatively fast grow-
ing plant, the common bean (Phaseolus vulgaris L.) grows 3 cm/day
on average [4]. Likemany plants, common beans grow toward (blue)
light [7] through the phototropism behavior, in constant balance
with other competing growth behaviors. Beans in particular dramat-
ically display circumnutation, a winding behavior for attachment
and climbing [4]. During plant growth, new cells replicate at the
tips, and older tissues gradually stiffen until they reach their final
size and maturity. Incoming light adds a directional bias to winding,
but only when this bias persists will the impact be irreversible and
manifested as permanent curvature in the stem.

Modeling plants.Many models exist in plant science literature,
with focus on particular aspects of plants and complex details of
the biological system (e.g., [2]). Plant growth has also been a source
of inspiration for several abstract models in computer science and
artificial life. A prominent example is L-systems [16], where for-
mal languages are interpreted to generate structures through a
set of production rules. Branching mechanisms in plants inspire
generative models adaptive to dynamics in the environment [26],
and are abstractly modeled using polygon meshes of trees [27]. In
this paper we develop a model of plant growth through a class of
recurrent neural networks called LSTM [13] (see below), based on
experimental data gathered from real plants.

Long Short-Term Memory. LSTMs [13] are a special class of re-
current neural networks that have been shown to effectively learn
sequential patterns in a variety of domains [9, 21]. As plant growth
is essentially a sequence of changes in plant tissue morphology,
the LSTM can directly be applied. In LSTMs the recurrent layers
normally found in recurrent ANNs are replaced by purpose-built
memory cells, with content controlled by different gate types (input,
forget, and output). The outputs of an LSTMmemory block are sent
back to block inputs and gates through recurrent connections. For
a more detailed description of LSTMs see [13]. LSTMs have shown
promise in plant classification by taking into account plant growth
over time [18], but to the best of our knowledge they have not yet
been applied to learn a plant growth forward model.

Evolutionary Computation. Evolutionary approaches have been
applied to many areas of robotics, including design of robot con-
trollers [3]. The approach we utilize, NEAT (NeuroEvolution of
Augmenting Topologies) [20], is a an evolutionary algorithm that
evolves ANNs incrementally from simple initial networks while
preserving the diversity of the evolutionary population. Evolution
of robot controllers can follow an embodied approach [24], meaning
that the controller is evolved directly in the real hardware. Another
approach is to evolve controllers in simulation based on relevant
models, and then transfer the evolved controller to the real hard-
ware. While the former approach can be time-consuming and costly,
the latter can suffer from the reality gap problem [15], meaning
that the evolved controller performs poorly on the real hardware
due to unknown limitations of the models.

3 METHODS
Our machine learning approach to shaping natural plants follows
the methods below. First, preliminary data collection experiments
in the bio-hybrid setup record plant growth patterns in reaction
to light stimuli. Recorded images are processed to build a stem
shape dataset. This data is used to train an LSTM in a supervised
way, to simulate plant stem stiffening and motion under any given
sequence of the light stimuli. Finally, the LSTM network is used as
a forward model to evolve controllers in simulation, for the task of
steering and shaping a plant, to avoid hitting obstacles and reach
desired targets by exploiting stem stiffening phenomena.

3.1 Bio-hybrid setup
Following our approach in [14, 22, 23], the bio-hybrid setup is
enclosed in a commercial grow box of dimensions 120 × 120 ×
200 cm3 in width, depth and height. The grow box interior is lined
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in matte black board for a consistent background, diminishing
light reflections. Freshly germinated beans (‘Saxa’ variety1) are
placed in commercial soil in 1.5l-pots, aligned with the grow box
back midpoint. The centralized robotic element consists of the
following: two NeoPixel LED strips , a Raspberry Pi camera module
, an LED light-bulb , and a Raspberry Pi. A NeoPixel strip contains
144 RGB LEDs , with peak-emission at wavelengths λmax 630, 530,
and 475 nm respectively. Each LED can emit up to 18 lumens at
full power, consuming 0.24 W. The NeoPixel LED strips are coiled
into cylindrical shapes and fastened to the grow box back wall,
30 cm above the soil and 35 cm to either side. The camera module
faces the plant at a height of 32 cm and distance of 74 cm. The
LED light-bulb is used as a flash when photographing, at 80 cm
above the ground and centered over the pot. The Raspberry Pi
runs background processes2 to administrate plant experiments,
including synchronizing flashes, capturing photos, extracting plant
stem data, running ANNs, controlling light sources, and uploading
data to a Network-attached storage device (NAS).3

3.2 Model setup
3.2.1 Dataset experiments. Our plant model is derived from

our previous dataset experiments with real plants, in a bio-hybrid
setup. These include six repetitions with a simplistic, non-reactive
controller [22], and three repetitions with a closed-loop adaptive
controller [14]. The open-loop controller switches light sources in
regular six hour intervals, and the closed-loop controller switches
according to plant tip position. In each experiment the plant is pho-
tographed every five minutes. The plants show influence by both
growth and motion, with substantial motion horizontally. They also
show variance between the behaviors of individual plants. Observ-
ing variance in plant experiments is a well-known phenomenon in
plant science, which requires high numbers of repetitions. However,
in the context of this research, where the focus is on evolutionary
computation and robotics, such high overheads for experiments are
infeasible. Instead we test our approach based on an engineering
perspective by testing whether the model, that results from these
experiments, helps us to successfully control a plant. We also test
if the evolved controllers are able to perform properly with such
dynamic and unexpected plant behavior.

3.2.2 Stem motion tracking. We describe our computer vision
method for stem motion tracking. The 10-point description of stem
geometry forms the basis of training data for our LSTM-based Stem
stiffening and motion model. We process images from the dataset
experiments described above, to record a 10-point xy description of
the full stem at each timestep, representing its phototropic motion
and stiffening dynamics. 10 points is sufficient to capture curvature
details within the growth area of the current setup. The images are
sampled4 at 1/8 resolution and processed according to the following
method, both for the dataset experiments described above, and for
the reality gap experiments detailed in Sec. 4.2. Before processing
the dataset experiment images, a set of images is compiled showing

1See our previous work [14] for all product specifications in this section.
2Managed by Systemd, system and service manager for Linux operating systems.
3The ZeroMQ (http://zeromq.org/) library is used for communication among these.
4Sampling was duplicated in two platforms: Python, utilizing the OpenCV library; and
IronPython using Grasshopper libraries pertaining to computer vision.

the setup without a plant. The setup images include all states of
the controller and any slight variations in lighting conditions. The
set of images is sampled,4 isolating the green RGB channel value at
each pixel position (i, j) and remapping it onto the domain [0, 1],
forming sequence Λ containing a matrixM of green values for each
image. To represent the interval of possible green channel values
present in the setup, matrices L and H are constructed by

Li, j = min
M ∈Λ

(Mi, j ), Hi, j = max
M ∈Λ

(Mi, j ). (1)

After constructing the setup matrices, dataset experiment im-
ages of plants are processed. The green channel value is isolated
for each pixel (i, j), remapped to the domain [0, 1], and saved into
the matrix R. Pixels within a window are identified as contain-
ing plant material if: (Ri, j < Li, j − θ1) ∨ (Ri, j > Hi, j + θ1), for
threshold θ1 = 0.2. Each identified plant pixel is extracted to set P ,
and their (xp ,yp ) coordinate positions are used to identify two
possible locations of the plant’s tip. In order to locate the growth
tip д = (xд ,yд), plant pixels are compared to the globally defined
anchor a = (xa ,ya ), representing the position where the plant stem
emerges from the soil. Two possible xy growth tip positions are
identified (corner point c as the furthest from a in xy, and high
point h as the same in y only) and one selected as дn based on
Euclidean distance (d) from д in the prior timestep, such that

c = argmax
(xp,yp )∈P

|xa − xp | + |ya − yp |, (2)

h = argmax
(xp,yp )∈P

|ya − yp |, (3)

дn =

{
h, if d(дn−1,h) < d(дn−1, c)
c, otherwise . (4)

The remaining intermediate points ((xS2 ,yS2 ), · · · , (xS9 ,yS9 ))
describing the stem are preliminarily identified from set P , and
then smoothed while preserving the representation of stiffening
dynamics. For these eight points, the yi are distributed evenly
between the tip and anchor, as

ySi =
i

9
|ya − yд | + ya , (5)

and xSi are set as the averaged xp for pixels in set P that have yp
within threshold θ2 of the respective ySi , such that

xSi = xp : ∀xp ∈ P : |yp − ySi | < θ2, (6)

where θ2 = 30 pixels. In this way, a 10-point description S of the full
stem S = (a, (xS2 ,yS2 ), · · · , (xS9 ,yS9 ),д) is defined. Due to minor
variations in images caused by shadows and light reflections on the
stem, this 10-point detection contains some errors.We address these
errors using a simple algorithm based on Smoothing via Iterative
Averaging (SIA) [17], which preserves the key topological features
of the curve being smoothed. For each point in Sn , our algorithm
utilizes the equation

(xSi ,ySi ) =
(
1
2
(x i−1 + x i+1), 1

2
(yi−1 + yi+1)

)
(7)

iteratively, according to the following steps: 1) for i ∈ {2, 4, 6, 8},
apply eq. 7, 2) for i ∈ {3, 5, 7, 9}, apply eq. 7, 3) for i ∈ {2, 4, 6, 8},
apply eq. 7. In this way, the intermediate stem points are smoothed
with the SIA-based process, while the tip and anchor remain un-
changed. The newly smoothed sequences S are converted to cm
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and scaled to match physical setup dimensions. The anchors are
then unified to standardize the data, by translating (xSi ,ySi ) points
in Sn according to ((xSi ,ySi ) + (a − a : ∀a ∈ Sn )). The result-
ing data is reformatted to sequence Ψ of 18-dimensional vectors
ψj = (xS2j ,y

S2
j , · · · ,x

S9
j ,y

S9
j ,x

д
j ,y

д
j ), without the now redundant

anchor values. These vectors are the basis for regression data for
our LSTM-based Stem stiffening and motion model, described below.

3.2.3 LSTM trained as Stem stiffening and motion model. Build-
ing a holistic model of plant stem dynamics is a complex task [2]
that would benefit from deep learning. However there is a lack of
existing data, and the substantial overhead associated with plant
experiments makes it infeasible to obtain large amounts of new
data (many plants can be grown in parallel but controlled light
conditions, monitoring, and tracking are costly). Therefore, having
obtained a small amount of data from real plant experiments—
described above—we develop a method to artificially expand that
data, avoiding overfitting when training the LSTM.

Preparation of stem data for regression. After manually removing
data in xy-areas that are too sparsely populated to provide reliable
data (mostly in zones far from the origin, where only one plant of
nine may have reached by coincidence), we process the experiment
motion tracking data in two ways to expand the set. Firstly we add
noise, to reduce the tendency of overfitting, and secondly we add a
generic model, such that the typical plant behavior is dominantly
represented in the data for the LSTM.

In order to add normal distribution noise, in addition to the ex-
periment data in sequence Ψ, we define noisy data in sequences
(Ψ1, · · · ,Ψn ), whereψnj = ((xS2j )Ψn , (yS2j )Ψn , · · · , (xS9j )Ψn , (yS9j )Ψn ,
(xдj )

Ψn , (yдj )
Ψn ). The noise values applied to each growth tip (xдj ,y

д
j )

in Ψ are computed according to the mean µ and standard deviation
σ of a finite quantity (θ3) of the closest growth tips (xдi ,y

д
i ) that

have the same light condition b. To calculate this, for each growth
tip (xдj ,y

д
j ), all other growth tips in Ψ sharing the same light condi-

tion b are placed into sequence distj , and are then sorted according
to their Euclidean distance from the respective tip atm = j. The θ3
closest tips for each respective tip are defined asWΨ , such that

w j = (xдi ,y
д
i ) ∈ Ψ | n ≤ θ3 ∈ distjn , (8)

where θ3 = 100. The mean µ for noise is calculated as

µ(xдj ) =
1

|WΨ |

|WΨ |∑
j=1

w jx
д
i , (9)

with a symmetrical equation for µ(yдj ), and standard deviation σ as

σ 2(xдj ) =
1

|WΨ |

|WΨ |∑
j=1

w j

(
x
д
i − µ(xдj )

2
)
, (10)

with a symmetrical equation for σ 2(yдj ). The noisy data in each
new sequence Ψn is calculated by first defining the noisy growth
tips and then defining the noisy intermediate points in relation
to the tip output. The new noisy tips ((xдj )

Ψn , (yдj )
Ψn ) in Ψn are

calculated using normal distribution noise, according to the existing

tips (xдj ,y
д
j ), and µ and σ values scaled by factor ω such that

(xдj )
Ψn = x

д
j +N

(
µ(xдj ),σ (x

д
j )ω

)
, (11)

with symmetrical equation for (yдj )
Ψn , where scaling factorω = 0.1.

The noisy intermediate points ((xSij )Ψn , (ySij )Ψn ) in Ψn , are calcu-
lated according to the noisy tips ((xдj )

Ψn , (yдj )
Ψn ), and are scaled by

the valuesω2(xSi ),ω2(ySi ). The noise values are generated through
an artificial mean µ2 and standard deviation σ2, defined according
to the calculated standard deviation and the generated change in
position of the noisy growth tips, such that

µ2
(
(xSij )Ψn

)
= xSij +

(
(xдj )

Ψn − x
д
j

)
ω2(xSi ), (12)

σ2
(
(xSij )Ψn

)
=
(
σ (xдj )ω

)
ω2(xSi ), (13)

with symmetrical equations for µ2
(
(ySij )Ψn

)
, σ2

(
(ySij )Ψn

)
, where

scaling factorsω2(xSi ),ω2(ySi ) are defined according to the extents
in Ψ of the respective intermediate point (xSi ,ySi ) in comparison
to the extents of growth tip (xд ,yд). These are defined as

ω2(xSi ) = | min
xSii ∈Ψ

(xSii ) − max
xSii ∈Ψ

(xSii )| · | min
xдi ∈Ψ

(xдi ) − max
xдi ∈Ψ

(xдi )|
−1,

(14)

with a symmetrical equation for ω2(ySi ). In new noisy data Ψn ,
the intermediate points ((xSij )Ψn , (ySij )Ψn ) are defined using normal
distribution noise, according to µ2 and σ2 and scaled by ω, such
that

(xSij )Ψn = xSij +N
(
µ2((xSij )Ψn ),σ2((xSij )Ψn )ω

)
, (15)

with a symmetrical equation for (ySij )Ψn . In the methods implemen-
tation described in this paper, we conduct three runs of equations 11-
15 and their respective symmetries, generating three unique se-
quences of noisy data: Ψ1,Ψ2,Ψ3.

In order to add a generic plant model, we manually select ex-
periment data associated with the natural plants’ smoothest and
least noisy movements (identified by observation), and then follow
a data-driven approach. We reinforce these generic movements as
dominant by adding additional translations of them, distributed
over small xy distances. In addition to experiment data Ψ and noisy
data Ψn , we define new generic model data in sequence ΨΦ, with
each vectorψΦj structured as those in Ψ, defined as:

(xΨΦ
j ,y

ΨΦ
j ) ∈ ψΦj =

(
(x j ∈ ψj ) ± 10λ , (yj ∈ ψj ) ± 10λ

)
, (16)

where λ = (−3, . . . ,−6), generating 64 new xy translations in ΨΦ.
The data sequences Ψ,Ψn , and ΨΦ are combined to form Ψ∗.

Vectors in Ψ∗ are then mirrored across the x-axis, as we assume the
targeted plant behavior to lack left-right bias. This also doubles the
quantity of data. ThenΨ∗ is reformatted according to timestep, such
that each new vectorψ ∗

j is composed of 18 dimensions representing
the current xy stem position, 18 dimensions representing the next
stem position, and one dimension representing the Boolean light
condition. Vectors are removed if they 1) contain duplicate stems at
the current and next positions, or 2) if the xy change is greater than
20× the average xy in Ψ∗. We end up with a Ψ∗ dataset containing
101,162 vectors.
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Figure 1: LSTM-based model training.

Training procedure. In order to obtain a holistic plant model, we
train the LSTM using Keras [6], a high-level wrapper of Tensor-
Flow [1]. The data in Ψ∗ is formatted as described above, in vectors
containing nine 2D stem points at a given time step and at the sub-
sequent timestep, together with current light conditions (left/right
light on). The LSTM network has 19 input units (current nine points
and light condition), 50 LSTM memory blocks, and 18 output units
(next nine points). We shuffle the vectors ψ ∗

j and split them into
training (70%), validation (20%), and testing set (10%). We train the
LSTM network with the training set in sequence of batches of size
N = 30 for 200 epochs at a steady learning rate of 0.001 using
Adam optimizer [1]. The training loss Lt is the mean absolute error
(MAE), defined as

Lt =
1
N

N∑
i=1

1
18

10∑
j=2

| x jp − x
j
t | + | y jp − y jt |, (17)

where x jt andy
j
t are the true xy coordinate values of the stem point j ,

and x
j
p and y jp are the corresponding predicted coordinates. The

validation dataset is used to track the training progress through
validation loss Lv (calculated similarly to Lt but not in batches).
An early stopping callback is implemented to prevent overfitting
by tracking Lv and stop the training process with patience of ten
epochs (i.e., if the Lv stops improving for ten epochs). As seen in
Fig. 1, the training process stops at the 27th epoch when Lv stopped
improving for ten epochs at Lt = 1.56× 10−3 and Lv = 1.55× 10−3.
Then, we calculate the MAE for each of the three datasets when
used as input to the network. The error values for the training,
validation and testing datasets are 1.55 × 10−3, 1.55 × 10−3, and
1.44 × 10−3 respectively. On average, the error is ≈ 1 mm at each
coordinate value, showing that the resulting model represents plant
behavior closely5.

3.3 Controller setup
Our controller is an ANN operating two light sources. The input to
the ANN at each time step is 1) a set of 10-points (20 real numbers)
representing the current plant position and shape, as described
above, 2) the current coordinates of the target (2 real numbers),
and 3) coordinates of the obstacle (4 real numbers). We have two
setups: in silico (simulation) and in vivo (‘wet’ setup with plant and
hardware). In silico, the 10 points are directly generated using the
stem stiffening and motion model. In vivo, a camera and computer

5Find a video at: https://vimeo.com/265144652

vision detects the actual plant and forms the corresponding 10
points. The output of the ANN is the control triggering light sources
for stimuli.

3.3.1 Task: Obstacle avoidance by shaping the plant. The con-
troller has to shape the plant appropriately by navigating it around a
virtual obstacle to then reach a target area (radius is 2 cm). The plant
should not touch the obstacle with any part of its body through-
out the experiment. Since the obstacle is virtual, it neither casts
a shadow, nor does it give other physical cues (e.g., a mechanical
barrier) that would allow the plant to avoid or grow around it by
itself. We perform the obstacle avoidance task in two different ex-
periment settings. In the first experiment (left target experiment),
a fixed target is located at 5.12 cm to the left of the plant anchor
and 17.9 cm above it. We evaluate the controller in four different
scenarios where a rectangular obstacle (7 × 3 cm2) is centered at
four different locations. In the first scenario the obstacle is cen-
tered ≈8.24 cm left of the plant anchor point and at a height of
8.8 cm. In the second scenario, the obstacle is 2.67 cm further to the
right (closer to the plant), making the task more challenging. In the
third scenario, the obstacle is an additional 2.67 cm further to the
right, making it impossible for the plant to reach the target. Finally,
the obstacle is an additional 5.33 cm further to the right, this time
clearing the area enough for the plant to again reach the target. In
the second experiment (middle target experiment), a fixed target is
located above the plant anchor at a hight of 17.9 cm. Here, we have
only two scenarios. In the first scenario, the obstacle is centered at
≈3 cm right of the plant anchor and at a height of 8.8 cm. In the
second scenario, the obstacle is centered at ≈3 cm left of the plant
anchor and at a height of 8.8 cm. Hence, the controller requires
different strategies to control the plant for different target/obstacle
configurations, which makes the task more challenging. In addition,
the plant stiffens only over time, requiring the plant tip to be guided
in wide deviations from the plant’s ending configuration.

3.3.2 Evolutionary approach. We use MultiNEAT [5], a portable
library that provides Python bindings to NEAT [20], to evolve ANN
controllers. We use the NEAT parameters set from our previous
work [14, 22, 23]. We follow a step-wise simulation approach, where
the stem description St = (xat ,yat ,x

S2
t ,y

S2
t , · · · ,x

S9
t ,y

S9
t ,x

д
t ,y

д
t ),

the target position x∗i , and the coordinates of an obstacle xoi are
input to the ANN at each time step t . The output of the network (Ct )
regulates the light settings. If Ct ≤ 0.5, it triggers the left light
source, otherwise, the right. The current plant condition and light
setting (x,C)t impact plant behavior during that time step. The
LSTM stem stiffening and motion model is used to predict the next
plant stem St+1 accordingly. For experiments in reality, an image
of the plant is processed to determine St+1 (see Sec. 3.2.2). The
simulation is stopped when the tip yдt value is equivalent to ≈21 cm
or once the plant touches an obstacle. Beans require ≈72 hours to
grow that high. This overhead is relatively manageable, and allows
enough growth to exploit stem stiffening and avoid obstacles.

At the simulation end (at t = f ), performance of the ANN con-
troller is evaluated using a behavioral fitness function F (according
to the classification in [19]). Plant motion is rewarded by measuring
the distance traveled by tip д towards the target along both x and
y axes as xr = |x∗ | − |x∗ − x

д
f |, yr = |y∗ | − |y∗ −yдf |, where (x

∗,y∗)
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is the target position. The fitness F is then calculated by

F =
xr + yr
|x∗ | + |y∗ | , (18)

where |x∗ | + |y∗ | is the theoretical best fitness value the controller
can achieve. If the controller is evaluated at different scenarios, then
its fitness value is the average of all evaluations.

4 RESULTS
Based on the stem stiffening and motion model (see Sec. 3.2.3), we
evolve the robotic controllers and evaluate their performance in
simulation. Next, we transfer the fittest controllers to reality and
investigate the extent of the reality gap.

4.1 Evolving controllers in simulation
First, we report the results of the left target experiment. The box-
plots in Fig. 2(a) and function boxplots in Fig. 2(b) show the per-
formance of 20 independent evolutionary runs, 1000 generations
each. The best fitness per generation for all evolutionary runs is
considered. Notice the steady increase in median until convergence
is reached around the 500th generation. In this experiment the
controller is evaluated according to four scenarios (see Sec. 3.3.1).
According to the behavior of one of the best controllers (fitness of
82.5%), the controller is able to determine whether or not it needs
to exploit the stem’s natural stiffening over time, in order to avoid
hitting the obstacle. In case there is a possibility to hit an obstacle
(e.g., second scenario), the controller steers the plant away into the
opposite direction of the obstacle, long enough to obtain sufficient
stiffness at the lower parts of the stem, see Fig. 2(d), then steers
the plant back towards the target area, see Fig. 2(e). In case the
obstacle is not blocking the way (e.g., forth scenario), the controller
leads the plant directly towards the target area (i.e., no stiffening is
necessary). The behavior in all scenarios can be seen in the video6.

Second, we report the results of the middle target experiment.
Here, we also have 20 evolutionary runs, 1000 generations each as
shown in Figs. 2(f) and (g). In contrast to the previous experiment,
the convergence is reached earlier, around the 350th generation.
This indicates that the task here is easier by comparison. The ex-
pected behavior of the evolved controller is to first steer the plant
away from the target while the stem stiffens, then steer the plant
back to reach the target while avoiding the obstacle—as in the left
target experiment. However, the controller here (fitness of 97.3%)
steers the plant to the obstacle side near the target, see Fig. 2(h),
then switches between the two light sources until the plant obtains
enough height and stiffness without hitting the obstacle, see Fig. 2(i).
Finally it steers the plant tip towards the target, see Fig. 2(j).

4.2 Performance of controllers in reality
To test controller performance in the physical world, we examine
whether it can guide a natural bean plant around a virtual obsta-
cle without colliding, and reach the target area. This addresses
the reality-gap problem [15], which states that controllers evolved
in simulation do not always transfer to a real setup, because the
simulation is limited in principle. To test the reality gap, we use
the setup described in Sec. 3.1. Computer vision detects the stem,

6Find a video at: https://vimeo.com/265144652

feeding into the ANN evolved in simulation, which controls light
stimuli provided to the real bean plant. The controller we select is
evolved in the left target experiment, with the obstacle centered
≈6.3 cm left of the plant anchor, 12.5 cm above the soil. The bio-
hybrid setup completed the task with the real plant, although the
plant’s circumnutation behavior brought it in close proximity to
the obstacle (see Fig. 3 and video6. In the experiment, the controller
initially maintained the right light, guiding the plant away from
the obstacle for ≈37 h, until the plant was 7.4 cm right of the plant
origin and 15.4 cm above the soil, see Fig. 3(b). Then it switched
to the left light, quickly bringing the plant tip to the opposite side,
while the stem retained some stiffness. After less than 2 h, the
plant tip is roughly in the center, with a pronounced curve in the
stem, see Fig. 3(c), as lower tissues already stiffen. Then follows a
phase of quick light alterations, as the controller guides the plant
tip close to the obstacle edge, leaving it near to the target after
clearing the obstacle. The left light is then triggered for another
37 h, successfully guiding the plant to the target, while the curva-
ture of the stiffened stem allows it to entirely avoid the obstacle.
The controller’s effectiveness in exploiting the plant’s stiffening
behavior is seen by comparing this result to those of [14]. Here,
stiffening has resulted in noticeable stem curvature, while in [14]
the stems have a straight shape, even after being steered to targets
on opposing sides. The evolved controller together with the real
plant achieves 92.4% fitness, see Fig. 3(d). The experiment was re-
peated two further times, achieving fitnesses of 92.0% and 87.7%.
In the latter, the bean grows abnormally. It is significantly slower
(by half) than the others, which have comparable growth speeds to
those in [14, 22, 23]. While both other experiments last 75 h, this
bean only grows above the obstacle in hour 84. However, the con-
troller behaves correctly, and the bean approaches the target until
hour 198, when its preexisting anomalies cause collapse. We record
the fitness when the plant tip reaches the target area, because it is
difficult to hit a single point, considering the stiffened tissues. How-
ever, it is possible to achieve higher fitness values, as a maximum
fitness of 99.3% was later observed in the second experiment.

5 DISCUSSION AND CONCLUSION
Following the objective of using natural plants to do additive man-
ufacturing and to implement a real-world, tunable developmental
system, we have set up a toolchain to shape natural plants in an evo-
lutionary robotics approach. We acquired data about the growth
and motion of a plant, trained a state-of-the-art LSTM as plant
model, evolved robot controllers using the LSTM as simulator, and
successfully tested these controllers for the reality gap. Our focus
was on the delicate interplay of plant motion and tissue-stiffening
to shape plants around obstacles with collision-free control. Early
on, the plant motion has to be controlled strategically to provoke
the correct stiffened shape later. We call this particular phenom-
enon ‘embodied memory’ because the plant tip motion and the
orientation of the whole plant during the experiment is integrated
over time and partially reflected in the final stiffened shape of the
plant. This is particularly different from other tasks in evolutionary
robotics, such as the navigation of a mobile robot, where the full
history (robot trajectory) has only a minor and indirect influence
on the task completion. The task could arguably be compared to the
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(a) left target exp., boxplot of best fitness per gen.
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(b) left target exp., functional boxplot, best fit. per gen.
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(c) Initial stem geometry.
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(d) Stem geometry at 4.0 simulated hours.
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(e) Stem geometry at 6.5 simulated hours.
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(f) middle target exp., boxplot, best fit. per gen.
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(g) middle target exp., functional boxplot, best fit. per gen.
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(h) Stem geometry at 2.5 simulated hours.
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(i) Stem geometry at 4.8 simulated hours.
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(j) Stem geometry at 7.2 simulated hours.

Figure 2: Performance of the evolutionary process over generations for 20 evolutionary runs.

control of a robot arm where joints closer to the base lose their flex-
ibility over time. In comparison to our previous work [14], where
controllers were evolved to guide the plant tip into randomly gener-
ated targets, our target control behavior is evidently more complex,
because the evolutionary process required 300 more generations till

convergence. The controller here needs to be aware of the whole
plant body instead of only the tip, in order to be able to avoid hitting
the obstacle at any point along the stem.

A key achievement of this work is the successful application of
methods frommachine learning (LSTM network) to create a holistic
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(a) 20 h (b) 37 h (c) 54 h (d) 71 h

Figure 3: Sequence of images showing the course of a reality-gap experiment. The yellow circles on top indicate which light is on
(filled: on, empty: off). The larger filled red circle is the target area and the gray rectangle is the obstacle the plant is not allowed to touch.

plant model. Unfortunately, such models representing the plant’s
macroscopic reactions to stimuli are not readily available from
plant science. We have shown that with data from a few generic
plant experiments, a sufficient model can be obtained. However, the
limited availability of data is a challenge as common in machine
learning and especially deep learning. Growing plants as such can
be parallelized but considerable costs are added by controlling the
light conditions and tracking, hence data is sparse.We have reported
our approach to data augmentation, which may also have some
potential to scale up.

The presented methodology with heavy use of machine learning
techniques has potential to scale up to more desirable growth tasks
that go beyond mere obstacle avoiding. Options are to grow plant
patterns on meter-scales or more, to grow and control multiple
plants within the same area, and to grow also 3D-patterns. Besides
their natural aesthetics these grown shapes may also have function-
ality, for example, as architectural artifacts (green walls, roofs, etc.).
Therefore, we plan to make the transition to a 3D setup in future
work, where we can grow more complex shapes, such as spirals,
geometrical objects, or even writing. Controlling multiple plants
concurrently will also add complexity, especially once we allow
them to interact. We plan to automatically braid plants, use them
to change material properties in construction, to investigate differ-
ent plant species, and to grow complex structures, such as meshes
or even benches. In addition, we investigate options to use phy-
tosensing (i.e., using plants as sensors) that could help to implement
synergistic robot-plant interactions. Hence, the presented machine
learning approach of shaping plants opens doors for autonomous
bio-hybrid systems with promising applications.
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