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ABSTRACT
From the hand-crafted to the highly engineered, braided structures have demonstrated broad 
versatility across scales, materials, and performance types, leading to their use in a plethora of 
application domains. Despite this prevalence, braided structures have seen little exploration within 
a contemporary architectural context. 
Within the flora robotica project, complex braided structures are a core element of the architectural 
vision, driving a need for generalized braid design modeling tools that can support fabrication. Due 
to limited availability of existing suitable tools, this interest motivates the development of a digital 
toolset for design exploration. In this paper, we present our underlying methods of braid topology 
representation and physics-based simulation for hollow tubular braids. We contextualize our 
approach in the literature where existing methods for this class of problem are not directly suited to 
our application, but offer important foundations. Generally, the tile generation method we employ 
is an already known approach, but we meaningfully extend it to increase the flexibility and scope of 
topologies able to be modeled. Our methods support design workflows with both predetermined 
target geometries and generative, adaptive inputs. This provides a high degree of design agency by 
supporting real-time exploration and modification of topologies. We address some common phys-
ical simulation problems, mainly the overshooting problem and collision detection optimization, for 
which we develop dynamic simulation constraints. This enables unrolling into realistically straight 
strips, our key fabrication-oriented contribution. We conclude by outlining further work, specifically 
the design and realization of physical braids, fabricated robotically or by hand.
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INTRODUCTION
This paper presents a system for the representation and simula-
tion of braid topologies. Here, we briefly describe the motivation 
for modeling braid in a way that is useful for design and fabri-
cation workflows, and summarize our methods developed to 
address that motivation.

The work has been developed in the context of the flora robotica 
project (http://www.florarobotica.eu; Hamann et al. 2015), which 
focuses on symbiotic relationships between biological plants 
and robotic elements in an architectural design context (see 
Figure 2). The architectural structures created within the project 
incorporate both living and nonliving material in structural roles, 
with their organization governed by both robotic controllers 
and user interaction. This application requires that mechanical 
scaffolds are not predesigned and prefabricated, but rather 
self-organize continuously in situ through a distributed construc-
tion process. The scaffolds may be collaboratively fabricated by 
stationary, centrally-controlled braid machines such as industrial 
braid machines (Smith 1989; Haehnel and Li 1998; Richardson 
1993), swarms of distributed mobile braiding robots (Heinrich 
et al. 2016), or manual braiding by human users. Braid is used 
as an overall logic for the mechanical system in flora robotica 
due to its properties of robustness, scaleless organization, and 
flexibility in material and pattern. It is applicable from build-
ing-sized structural scaffolds to soft-body robot arms, and can 
seamlessly incorporate mechanical filaments, living plants, and 
embedded electronics. In industrial manufacturing contexts 
(where braid's applications are as varied as rope, bicycle frames, 
and medical devices), braid is defined as an interlacing pattern of 
three or more continuous filaments, with all filaments performing 
functionally equivalent roles and spanning the length of the braid 
(Wulfhorst et al. 2006; Mitchell 1967); this is differentiated from 
manufactured weave, which contains distinct functional groups 
of warp and weft (Kawabata et al. 1973). Using the basic logic 
of braid, an expansive variety of shapes can be fabricated by 
changing only the pattern of interlacing filaments (see Figure 3). 
The resulting structures can include such features as branching, 
holes, caps, sockets, and flexible joints (flexure bearings). 

The focus of this paper is the fabrication-oriented modeling 
and simulation of hollow tubular braids (see Figure 4), incorpo-
rating the above features and properties. We focus on this type 
because we consider hollow tubular braids to offer structural 
potential at an architectural scale while maintaining flexibility 
of topology (see Figure 3). First, we discuss the state-of the-art 
of relevant representation methods (subdivided into pattern 
generation and geometrical representation) and simulation 
methods. Second, we present our braid representation method, 
subdivided into two workflows. The pattern generation workflow 

3	 Examples of hand-produced 
complex braid morphologies.

4	 A three-step method presented 
in the paper. From left: pattern 
generation workflow, geometry 
represenation workflow, simulation.

3

2	 Hand-produced braids acting as 
scaffolds for plants and robotic 
elements in the context of an early 
exploration for the flora robotica 
project
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uses a designed tile dictionary to assign tiles according to edge 
colorings, while the geometry representation workflow inter-
prets the generated patterns into a mesh prepared for physical 
simulation. Third, we present our simulation method, focusing on 
our dynamic constraints developed to address overshooting and 
hash-based line-line collision detection. Fourth, we present the 
results of the representation and simulation methods, assessed 
according to performance evaluation metrics, including side-
by-side comparisons between our modeling results and the 
manufactured prototypes that we targeted for representation. 
Finally, we discuss possible directions for future work, including 
automated fabrication, automated generation of tile order, 
dynamic remeshing during simulation, and tying the simulation 
results to structural analysis. These realms of future work are also 
relevant to our overall motivation for braid modeling, described 
above.

The primary contribution of the representation and simulation 
methods we present here is to provide a highly flexible braid 
modeling toolset that can support a variety of design and fabrica-
tion workflows.

STATE-OF-THE-ART
The representation and simulation scopes of this paper cover 
problems extensively raised in the literature, through modeling 
of weave, braid, knit and related patterns. Therefore, the 
state-of-the-art is presented in three parts: pattern generation, 
geometrical representation of such patterns, and simulation of 
textiles and other woven or braided materials.

Pattern Generation
The weaving pattern generation algorithm originated in Mercat 
(2001) and utilized in Kaplan and Cohen (2003) is defined as 
follows (based on pseudocode presented by Kaplan and Cohen): 
1) begin with a planar graph; 2) define the midpoint of each 
graph edge as a ‘crossing’; 3) connect the ‘crossings’ and define 
them as ‘threads;’ 4) expand ‘threads;’ and 5) offset heights of 
the ‘threads’ according to the order in which they overlap. This 
algorithm, through applications presented in the relevant papers, 
is able to generate a variety of patterns. Its ability to generate 
complex geometry such as Celtic knots has been demonstrated. 
In Akleman et al. (2009), the authors introduce a combinato-
rial structure called graph rotation systems as a formalization 
of Mercat’s method described above. They analyze the regular, 
semi-regular and irregular tilings produced with that algorithm. 
The works described above are further cited in Mallos (2009), 
which presents a triaxial weaving method for arbitrary orientable 
meshes using a single tile. The method therefore simplifies the 
weaving pattern generation problem into a problem of finding 
a universal tile design. An approach presented in Yuksel et al. 

(2012) utilizes a predefined set of tiles with two types of edges/
directions distinguished (course and wale edge). Those types are 
introduced so that the resulting knitting pattern follows rele-
vant fabrication constraints. The presented design interface is 
composed of two stages: low-poly direction assignment (labeling) 
and yarn-level pattern definition (stitch pattern definition), either 
with manually introduced modifications or predefined patches.

In summary, the literature presents two general approaches for 
woven or braided pattern generation, used in a multitude of 
ways. The two approaches are procedural generation of patterns, 
as in Mercat (2001) or Kaplan and Cohen (2003) and pattern 
production with a predefined set of tiles applied over discrete 
two- or three-dimensional geometry, as in Yuksel et al. (2012) or 
Mallos (2009).

Geometry Representation
Pattern generation can itself be the end objective, but in some 
cases the result is then used for physical simulation of textiles 
or fabrics. In other words, the generated pattern can feed a 
geometrical model for simulation of a physical object. The end 
objective of the method (either geometry per se or geometry 
for simulation) defines the characteristics of that representation 
and the properties that it should necessarily possess. If the aim is 
geometry directly, then a necessary property is aesthetic appeal, 
while if the aim is geometry for simulation, its properties must 
meet the criteria of the relevant simulation engine. In the system 
described in Kaplan and Cohen (2003), a two-dimensional Cubic 
Hermite spline is defined using control points constructed with 
Mercat’s method. After establishing the relationships between 
curves (the under-over pattern and the terminus points), the 
curves are then inflated to give the braids the desired thickness. 
If there are any images introduced in the knot (terminus points), 
the method has to order the under-over pattern afterwards, 
which introduces a backtracking procedure into the geometry 
creation method. A visually appealing three-dimensional geom-
etry is the aim of the Akleman et al. (2009) method. The first 
step in constructing the geometry is to create a low-poly control 
mesh/polyline which is then used to construct splines or ribbons. 
The ribbon/yarn collision avoidance problem is tackled with a 
set of simple rules, minimizing the chances of collisions to a 
negligible level. Quadratic B-splines and cubic Bezier surfaces are 
used for the final stage of geometry creation, resulting in either a 
better collision avoidance or a more appealing look.  The method 
presented in Yuksel et al. (2012) models fabric with two repre-
sentations. A low-resolution mesh is used to define directions, 
and is then utilized by a high-resolution generation routine. The 
generated high-resolution stitch-mesh is used to define a cubic 
Catmull-Rom spline representation of the yarns, which becomes 
the basis for yarn-level relaxation.

Braiding Patterns Zwieryzcki, Vestartas, Heinrich, Ayres
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Simulation
A highly precise yarn-level simulation method is presented in 
Yuksel et al. (2012). During each timestep, the algorithm looks for 
intersections of spheres placed along the yarns. If the intersec-
tion is found, the same check is performed with smaller spheres 
either until the intersection is resolved or until the lower limit 
of the radius is reached. Because of the iterative process for 
calculating varying radii sphere-sphere collisions, it is relatively 
slow. The physics engine presented in Jakobsen (2001) is known 
for its stability and speed of execution. While accuracy is not its 
main objective, it is visually believable and therefore useful in 
computer graphics. Its success is built upon the methods incor-
porated within it, including a Verlet integration scheme, a simple 
constraint solver using relaxation, modeling of rigid bodies as 
particles with constraints, and handling of collisions and pene-
trations using projections. The ‘ShapeOp’ (see http://shapeop.
org) geometry processing and optimization framework has its 
foundations in projection-based approaches (Bouaziz et al. 2012; 
Bouaziz et al. 2014). The constraints in this framework define 
relationships between subsets of points, which are then satisfied 
through projections. Due to an absence of momentum induced 
oscillations, the convergence in this method occurs considerably 
faster. The framework is characterized by its robustness, speed, 
and generalized definition of constraint. Spatial Hashing applied 
for collision detection is described in Teschner et al. (2003). The 
algorithm divides three-dimensional space into fixed-size boxes 
(cells) and assigns the vertices to them. Checking for intersec-
tions is therefore performed on a hash table, with quick search 
times and the possibility to check for both self-collisions and 
collisions between distinct objects. 

REPRESENTATION METHOD
Our method for braid representation is subdivided into two 
workflows: braiding pattern generation and geometrical repre-
sentation of those patterns. 

Pattern Generation Workflow
Our pattern generation method takes inspiration from many of 
the methods in the existing literature. The primary advantages 
achieved by the presented method are simplicity and general-
izability. These provide an increased flexibility in the topologies 
that can be represented. The implementation is tailored to work 
with orientable mesh surfaces, therefore the descriptions will be 
following the particular logic of the braiding patterns. Though 
the scope of this paper focuses on braiding patterns in 2D (i.e. 
hollow tubular braids), the approach works conceptually for other 
problem classes, such as 3D patterns and reciprocal structures. 
The complexity of braiding patterns presented here (such as 
those in Figure 3) cannot be simply classified as plain weave, 
braid or triaxial braiding. Our presented solution is based on 

Mercat’s method, but it is extended in a way that supports many 
additional types of braiding and weaving patterns, as well as the 
mixing of these two pattern categories. The advantage of the 
presented approach is the implicit nature of under-over relation-
ships, which result from the set of tile generation rules described 
in subsection Tile Design. In general, this method uses a precom-
puted set of tiles, which, in their underlying logic, combine 
different approaches seen in the literature. The method works 
directly on a mesh, and thus whenever used, the terms faces and 
edges refer to the mesh geometry rather than to a graph. 

Edge Coloring
The first step in the pattern generation workflow is to define 
how many types of interfaces are possible between the tiles 
(i.e., determining the possible transition cases). Figure 5 shows 
the three cases in our implementation, which are: no connection 
between the faces (Empty), connection with two strips sepa-
rated (Plain), and connection with two strips passing through the 
middle point (Braid, as in Mercat’s method). The interfaces are 
hereafter interchangeably referred to as colors.

Tile Dictionary
Once the number of colors is defined, the second step in the 
pattern generation workflow is the utilization of the tile dictio-
nary. It is necessary for this purpose to define the number of 
polygon types. (Though the dictionary and implementation 
encompass both triangles and quads, for clarity, the description 
will refer only to quads.) Given the number of polygon sides to 

5

5	 Interfaces used in the implementation (from left): Empty, Plain and Braid 

6	 An example of a complete set of tiles for 3 colors and 4-sided polygons. 24 tiles 
guarantee all the combinations of colors, given the possibility to rotate them.

6
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be colored and the number of possible colors, a finite set of color 
combinations becomes evident. The precise number of combi-
nations can be calculated using Polya’s Counting Theorem (Polya 
and Read 1987). For three colors and four-sided polygons, the 
number of possible color combinations after reducing the rota-
tional symmetries is equal to 24. The implementation uses tuples 
to identify a particular color combination. By sorting the tuples, 
the user gets a convenient overview of the complete set, useful 
for editing the predefined tiles. An example tile set can be seen 
in Figure 6. This dictionary is therefore a Wang tile set (Wang 
1961), with all the possible combinations of colors. However, 
from the point of view of the user, it is more intuitive to consider 
the colors of individual edges than particular tiles. It is important 
to note that contrary to Wang tiles, the ones presented here can 
be rotated, such that the number of combinations required for a 
complete set is reduced by rotational symmetry. 

Tile Design
While the edge colors describe the overall pattern, the tiles have 
to be designed with the interfaces in mind, so that the resulting 
pattern has a desired under-over order (in this implementation 
it’s a plain weaving order). There is a potentially infinite amount 
of weaving patterns with a particular color combination, so 
the rules specified here have to apply only to the strips which 
are taking part in the tile-to-tile interface (contrary to cycles 
contained wholly within a tile). As mentioned in the Edge Coloring 
subsection, there are three interface types in the presented 
implementation, from which two have to be resolved - the Braid 
and the Weave interface (Empty transition is skipped because it 
is an obvious case). The blue color hereafter represents the under 
state and the over strips are marked with red. In the case of the 

Braid interface the coloring is straightforward—the under point 
is marked with blue color as seen in Figure 7 and the over point 
is red. It is important to design tiles in a way following the colors 
and their meaning. Not crossing over with a red strip means 
that the blue part will not consequently go under (Fig.7). The 
meeting points have to be modified in case of the Plain interface. 
This time each point has 2 colors indicating the order of the 
strip, which means that the strip changes its order after passing 
through it. Note the left and right points are marked differently, 
therefore mirroring the tile will produce a wrong interface as 
seen in Figure 7. Once all the tiles are solved, it is possible to tile 
any orientable surface with any combination of colors. A small 
sample of colorings and resulting patterns is shown in Figure 16. 

Geometry Representation Workflow
The second part of our braid representation method—geometry 
representation—interprets the patterns generated from our edge 
colorings and tile dictionary. Through construction and discret-
ization, the patterns are represented geometrically such that they 
can be consistently used as inputs to physical simulation. 

Construction and Discretization
While it is possible to define a continuous parameter space for 
geometry construction as shown in Akleman et al. (2009), this 
implementation uses a point grid to ease the tile generation 
process. This makes the task of strip designing less error-prone. 
Each strip is declared as a series of grid-based coordinates. The 
grid with the underlying strips is mapped onto a B-spline surface 
constructed from the 4 corner points of a particular mesh quad. 
There is a small chance of self-intersection, particularly when the 
target face is nonplanar. The under-over order is expressed by 
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7	 A usage example of the implemented interface schemes. On the left side is the 
Plain interface, while Braid is shown to the right. The Plain interface is broken 
by mirroring the leftmost tile (bottom image), making the point coloring logic 
inconsistent - matched connection points have opposite colors. Mirroring the 
rightmost tile (bottom image) makes the Braid interface meaningless, as the 
marking of the strips doesn’t follow their order anymore. 

8	 A set of examples showing some correct tile designs. 

9	 From left: 90-degree right turn and 45-degree left turn. 
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physical prototypes - the straighter the unrolled strip, the closer 
it is to the straight band used in the fabrication process. Collision 
detection is a great impediment in the case of two-dimensional 
manifolds. Because of the discrete simulation timestep and 
geometry with no thickness, rapid checks of the side of collision 
can be rendered impossible (depending on the approach). The 
underconstrained nature of fabric simulations makes this problem 
even harder, as a variety of types of collisions occur in such 
simulations such as self-collisions, low and high speed collisions 
etc. (Bridson et al. 2002). 

Hash-based Line-Line Collision Detection
The spatial grid method (Teschner et al. 2003) is chosen for 
collision detection as it is appropriate for range searches in the 
dynamic environment of the simulation and it is not necessary to 
rebuild the spatial grid for each frame. The initial mesh model as 
established in the subsection "Construction and Discretization" 
defines the relationships between the particles and utilizes the 
naked edges of the mesh for collisions. The middle points of 
those edges are stored in the hash table and used to efficiently 
find nearby points, thereby greatly reducing the necessity to 
perform time-consuming line-line collisions. The 3D bucket size 
is set to half of the target length of the naked edge. While in the 
initial geometry there are edges of various lengths, the solver 
aims to equalize them to the target size and therefore the colli-
sion detection gets more robust over the time of the simulation 
(Note, the collisions are getting more frequent over time as well).

Overshooting 
Overshooting may be caused when the triangles of the mesh 
are undesirably stretched or compressed by large percentages. 

10

11

offsetting strip points by an interpolation of faces’ vertex normals. 
The grid points are also used in the process of mesh drawing. As 
shown in Figure 9, the point P1 is the point from the predefined 
strip. The angle of the strip turn determines the choice of the 
points P2 and the P3. The resulting variance of the mesh width 
is later unified by the geometry solver. The last step is to divide 
each of the strip segments into triangles, having in mind the final 
length is dependent on the number of divisions as seen in Figure 
10. While it is not the most intuitive way to set the final length 
for each strip, it does provide a uniform and simple triangulation 
method. 

SIMULATION METHOD
Once a braid pattern has been generated and has been repre-
sented geometrically to prepare it for simulation, our simulation 
method relaxes that pattern into a tightened braid that is both 
visually realistic and able to be fabricated.

Overview of Geometry Solving and Simulation
In order to evaluate physical properties of the digital model 
such as yarn-yarn interaction and self-weight, stripes cannot be 
simplified to a gridshell-like model, because of lack of the torsion 
induced by the flat strip geometry. As a result, mesh topology 
is constructed from triangle meshes with varying density to 
properly model the physical properties. The constraint-based 
geometry solver Kangaroo2 (see http://kangaroo3d.com) plays a 
critical role for the simulation and fabrication purposes. It both 
enables prediction of the anticipated physical appearance, and 
also forces the generated mesh strips into straight shape using 
custom-coded constraints. By unrolling the mesh strip geometry 
it is possible to evaluate how close the digital geometry is to the 

10	 The geometry solver has an objec-
tive to equalize all the naked edges 
to the same length. The discretiza-
tion of the initial geometry is one of 
the input parameters for the solver 
and determines the final length of 
each of the strip segments (red and 
blue).

11	 A collection of exemplary geome-
tries generated with the presented 
method.
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14

13

12	 Overshooting prevention. From 
left: Initial mesh, first step in relax-
ation and incremental strip width 
increase.

13	 Side-by-side comparisons of the 
fabricated T-junction and the simu-
lation of the same topology (left), 
and a fabricated ‘foot’ detail, where 
a column made with Braid pattern 
changes into Plain pattern.

14	 Unrolled strips before and after 
geometry solving.

15 The low-resolution of the mesh 
strip is what prevents it to form 
in the expected shape. With a 
proper remeshing technique the 
tight corner would likely be fully 
expressed.

A rule of thumb in computational mechanics is that to prevent 
overshooting, a triangle edge should not change length by more 
than 10% in a single time step (Caramana et al. 1998). This can 
be enforced by either adaptively decreasing the time step or 
decreasing the strain rate (the latter is used in this implemen-
tation). In usual cases, the projection solver would change the 
length of each edge to the target value as quickly as possible 
resulting in a loss of the under-over order within a few itera-
tions. A dynamic constraint is introduced as a solution for this 
overshooting problem. It starts with the initial edge lengths and 
incrementally adds up to reach the target. This results in longer 
calculation time but helps to achieve extremely tight braids with 
strips composed of well shaped isosceles triangles (see Figures 
11 and 12). 

RESULTS
The geometry obtained with the presented method closely 
approximates the manufactured prototypes, as seen in the 
comparison of isolated braid conditions of Figure 13. As the 
problem of cloth and fabric simulation is by definition an 

under-constrained problem, it is unreasonable to expect exactly 
the same results. For the purpose of design exploration and 
macro-scale behavior prediction, the presented approach seems 
to be accurate enough. The side-by-side comparisons reveal the 
same kinds of artifacts emerging in the real-world pieces and 
their virtual models. Furthermore, the strips remain straight after 
unrolling thereby satisfying a fabrication constraint (see Figure 
14). 

The simulation method was tested on a series of different 
models and topologies, with varying complexity and triangle 
count. When it comes to performance (tested on a mid-range 
professional PC), thanks to the projection-based geometry 
solver a simulation with a triangle count between 1,000-10,000 
converges after 15-120 seconds depending on the case (Figure 
11 b,c,d,g). Smaller forms like example (e) with few hundred trian-
gles, reach their final shape in a couple of seconds. The amount 
of time required to reach equilibrium is also dependent on the 
global shape, and with simple forms like example (a) (around 
40,000 triangles) it took only 120 second to converge as well. 

Braiding Patterns Zwieryzcki, Vestartas, Heinrich, Ayres
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LIMITATIONS AND FUTURE WORK
The next step in the implementation of the methods shown in 
this paper is to fully explore the relationship between design 
and fabrication, including extension to automated fabrication 
methods. The braided physical objects shown in this paper 
(such as those in Figure 3) are manufactured by hand, and 
thus the translation of our braid topology representations into 
machine-readable code remains to be addressed. 

Another future research direction is automated generation of 
tile order in complex braided structures. The rules described in 
the "Tile Design" subsection provide a complete framework to 
build upon, such that approaches with various priorities could 
utilize this framework to generate structures tailored to their 
requirements. This paper’s implementation of the presented 
pattern generation system focuses on weaving and braiding, but 
a very similar logic could be used to generate many other types 
of patterns. While tile-based texture generation is exhaustively 
explored in the literature, the presented system adds another 
layer of logic to it, making it possible to generate more complex 

types of dependencies between the tiles. This can potentially 
lead to research on structures such as reciprocal frames and 
tensegrity, which stand out because of the fundamental impor-
tance of element-to-element relations.  

In terms of simulation, future research directions include the 
use of a dynamic remeshing method for the strips, which 
could prevent undesired artifacts (as shown in Figure 15). 
Implementing a remeshing technique similar to the one 
presented in Narain et al. (2013) could resolve this issue and 
add to the overall geometry relaxation quality by making the 
unrolled strips even more similar to the desired straight shape 
(as described in the "Simulation Method" section). Currently, the 
line-line collisions are detected by measuring distances between 
their middle points, as described in the "Hash-based Line-Line 
Collision Detection" subsection. The authors plan to investigate 
rasterization to fully allocate all the buckets containing the lines. 

A broader direction for future research is the integration of 
structural analysis. The nonlinear relaxation methods this 

16

16	 Examples of various colorings 
and the resulting strip topologies 
constructed with the dictionary 
shown in Figure 6
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paper employs could be investigated for integration with Finite 
Element Analysis. If the focus remains on hollow tubular braids, 
this paper's understanding of braid as a configuration of indi-
vidual strips and their collisions could be usefully coupled with a 
macro-scale representation relating to its shell-like behavior. This 
combination may allow the exploration of relationships between 
braid topology, braid material, and structural performance. The 
stiffness of material used will impact shape, deformation, and 
overall possibilities for architectural application.

As the implementation described here is design-oriented, it is 
evident that it currently lacks a suitable user interface. With 
the possibility to show both colorings and simulation results 
simultaneously, it may be challenging to make it as user-friendly 
as the interface in Yuksel et al. (2012). The authors have begun 
to consider this problem in the context of an overall design work-
flow (Vestartas et al. 2017). 

CONCLUSION
This paper has presented a braid representation method 
through pattern generation and geometric representation of 
those patterns, as well as a simulation method for relaxing the 
geometry into tight and visually realistic braids. Generation of 
patterns is greatly simplified with the proposed approach and 
guarantees proper, plain order weaving/braiding patterns. This 
approach meaningfully extends existing tile-based approaches. 
It provides higher flexibility, noticeably expanding the range of 
braid topologies that are able to be represented. The geometrical 
representation of the patterns is based on mesh geometry, built 
upon an underlying point grid. This reduces self-intersections in 
the initial stage. The discretized geometry undergoes the simu-
lation of its physical behavior. The projection-based solver uses 
dynamic constraints to achieve the final woven/braided shape 
and straighten the strips. The achieved straightness of individual 
unrolled strips is the key fabrication constraint that makes this 
simulation approach a useful contribution, compared with other 
publications and previous approaches. 

Overall, the high flexibility of our braid representation and simu-
lation method is this paper's primary contribution, as it enables 
open-ended exploration of design and fabrication workflows for 
tubular braid. This has two impacts. First, it addresses our moti-
vation by laying a foundation for braided structures to be applied 
to the architectural domain. Second, the general modeling 
approach followed here could be usefully explored for flexible 
architectural design of other pattern-based nonlinear structures.

ACKNOWLEDGMENTS
Project flora robotica has received funding from the European Union’s 

Horizon 2020 research and innovation program under the FET grant 

agreement, no. 640959.

The authors gratefully acknowledge the assistance of David Andres Leon 

and Ashkan Cheheltan in the hand-production of the braided structures.

REFERENCES
Akleman, Ergun, Jianer Chen, Qing Xing, and Jonathan L. Gross. 2009. 

"Cyclic Plain-Weaving on Polygonal Mesh Surfaces With Graph Rotation 

Systems." ACM Transactions on Graphics 28 (3): 78. 

Akleman, Ergun, Jianer Chen, and Jonathan L. Gross. 2015. "Extended 

Graph Rotation Systems as a Model For Cyclic Weaving on Orientable 

Surfaces." Discrete Applied Mathematics 193 (C): 61–79.

Bailey, Christopher. 2008. "Creating Celtic Knot Work From User 

Parameters." Ph.D. thesis, The University of Bath.

Bouaziz, Sofien, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, 

and Mark Pauly. 2012. "Shape-Up: Shaping Discrete Geometry With 

Projections." Computer Graphics Forum 31 (5): 1657–1667. 

Bouaziz, Sofien, Sebatian Martin, Tiantian Liu, Ladislav Kavan, and Mark 

Pauly. 2014. "Projective Dynamics: Fusing Constraint Projections for Fast 

Simulation." ACM Transactions on Graphics 33 (4): 154.

.Branscomb, David, David Beale, and Royall Broughton. 2013. "New 

Directions in Braiding." Journal of Engineered Fibres and Fabrics 8 (2): 

11–24.

Bridson, Robert, Ronald Fedkiw, and John Anderson. 2002. "Robust 

Treatment of Collisions, Contact and Friction For Cloth Animation." ACM 

Transactions on Graphics 21 (3): 594–603.

Caramana, E. J., D. E. Burton, M. J. Shashkov, and P. P. Whalen. 1998. 

"The Construction of Compatible Hydrodynamics Algorithms Utilizing 

Conservation of Total Energy." Journal of Computational Physics 146 (1): 

227–262.

Durupinar, Funda, and Uğur Güdükbay. 2007. "Procedural Visualization of 

Knitwear and Woven Cloth." Computers and Graphics 31 (5): 778–783.

Haehnel, Rudolf, and Xing Li. 1998. Rotary braider machine. US Patent 

5,775,195, filed January 14, 1997, and issued July 7, 1998.  

Hamann, H., M. Wahby, T. Schmickl, P. Zahadat, D. Hofstadler, K. Stoy, 

S. Risi, A. Faina, F. Veenstra, S. Kernbach, I. Kuksin, O. Kernback, P. Ayres, 

and P. Wojtaszek. 2015. "Flora Robotica – Mixed Societies Of Symbiotic 

Robot-Plant Bio-Hybrids." In IEEE Symposium Series on Computational 

Intelligence, 1102–09. Cape Town, South Africa: SSCI.

Heinrich, Mary K., Mostafa Wahby, Mohammad D. Soorati, Daniel N. 

Hofstadler, Payam Zahadat, Phil Ayres, Kasper Stoy, and Heiko Hamann. 

2016. "Self-Organized Construction with Continuous Building Material: 

Higher Flexibility Based on Braided Structures." In IEEE 1st International 

Workshops on Foundations and Applications of Self* Systems (FAS*W), 

154–59. Augsburg, Germany: FAS*W. 

Braiding Patterns Zwieryzcki, Vestartas, Heinrich, Ayres



679ACADIA 2017 | DISCIPLINES + DISRUPTION

Igarashi, Yuki, Takeo Igarashi, and Hiromasa Suzuki. 2008. "Knitting a 3D 

Model." Computer Graphics Forum 27 (7): 1737–43. 

Jakobsen, Thomas. 2001. "Advanced Character Physics." In Proceedings of 

the Game Developers Conference, 1–16. GDC.

Jung, K., S. J. Kim, T. J., Kang, K. Chung, and J. R. Youn. 2003. "Optimum 

Modeling of 3-D Circular Braided Composites." In Proceedings of the 14th 

International Committee on Composite Materials Conference, 14–18. San 

Diego, CA: ICCM.

Kaldor, Jonathan M., Doug L. James, and Steve Marschner. 2008. 

"Simulating Knitted Cloth at the Yarn Level." ACM Transactions on Graphics 

27 (3): 65.

Kaplan, Matthew, and Elaine Cohen. 2003. "Computer Generated Celtic 

Design." In Proceedings of the 14th Eurographics Workshop on Rendering, 

9–19. Leuven, Belgium: EGRW.

Kawabata, S., Masako Niwa, and H. Kawai. 1973. "The Finite Deformation 

Theory Of Plain-Weave Fabrics Part I: The Biaxial Deformation Theory." 

Journal of the Textile Institute 64 (1): 21–46.

Mallos, James. 2009. "How to Weave a Basket of Arbitrary Shape." In 

Proceedings of the 8th Interdisciplinary Conference of the International 

Society of the Arts, Mathematics, and Architecture, 13–19. Albany, NY: 

ISAMA.

McCann, J., L. Albaugh, V. Narayanan, A. Grow, W. Matusik, J. Mankoff, 

and J. Hodgins. 2016. "A Compiler For 3D Machine Knitting." ACM 

Transactions on Graphics 35 (4): 49.

Mercat, C. 2001. "Les entrelacs des enluminure celtes." Dossier Pour La 

Science 15.

Mitchell, R., 1967. Braid and method of making it. US Patent 3,323,406. 

Filed April 7, 1964, and issued June 6, 1967.

Narain, Rahul, Tobias Pfaff, and James F. O’Brien. 2013. "Folding and 

Crumpling Adaptive Sheets." ACM Transactions on Graphics 32 (4): 51.

Pólya, G., and R. C. Read. 1987. Combinatorial Enumeration Of Groups, 

Graphs, And Chemical Compounds. New York: Springer-Verlag..

Qing, Xing, Gabriel Esquivel, Ryan Collier, Michael Tomaso, and Ergun 

Akleman. 2011. "Weaving Methods in Architectural Design." In ACADIA 

2011 Regional: Parametricism, 59–66. Lincoln, NE: ACADIA.

Richardson, Donald. 1993. Maypole Braider Having a Three Under and 

Three Over Braiding Path. US Patent 5,257,571. Filed January 28, 1993, 

and issued November 2, 1993.

Smith, Michael F. 1989. Apparatus and method for automated braiding of 

square rope and rope product produced thereby. US Patent 4,803,909. 

Filed April 13, 1987, and issued February 14, 1989.

Teschner, M., B. Hiedelberger, M. Müller, D. Pomeranets, and M. Gross. 

2003. "Optimized Spatial Hashing for Collision Detection of Deformable 

Objects." In Proceedings of the 8th Workshop on Vision, Modeling, and 

Visualization, 47–54. Munich, Germany: VMV.

Vestartas, P., M. K. Heinrich, M. Zwierzycki, and P. Ayres. 2017. "Design 

Tools and Workflows for Braided Structures." In Design Modelling 

Symposium 2017 (accepted paper, not yet published)

Wang, Hao. 1961. "Proving Thorems By Pattern Recognition II." Bell 

Systems Technical Journal 40 1–41.

Wulfhorst, Burkhard, Oliver Maetschke, Markus Osterloh, Alexander 

Büsgen, and Klaus-Peter Weber. 2006. Textile Technology. Wiley Online 

Library.

Xing, Qing, Ergun Akleman, Jianer Chen, and Jonathan L. Gross. 2010. 

"Single-Cycle Plain-Woven Objects." In Proceedings of the Shape Modeling 

International Conference, 90–99. Aix en Provence, France: SMI.

Yuksel, Cem, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 

2012. "Stitch Meshes For Modeling Knitted Clothing With Yarn Level 

Detail." ACM Transactions on Graphics 31 (4): 37.

Zhou, Kun, Xin Huang, Xi Wang, Yiying Tong, Mathieu Desbrun, Baining 

Guo, and Heung Yeung Shum. 2006. "Mesh Quilting For Geometric 

Texture Synthesis." ACM Transactions on Graphics 25 (3): 690–97.

IMAGE CREDITS
Figure 2: Anders Ingvartsen, 2016

All other drawings and images by the authors. 

Mateusz Zwierzycki is an architect, developer and Grasshopper user. 

He is author or co-author of such libraries and plugins as Anemone, 

Volvox, Starling, and most recently Owl. He is also the founder of Object 

(theObject.co), a long time workshop tutor, teacher and a parametric 

design popularizer.

Petras Vestartas is a PhD student at IBOIS, EPFL. He has previously 

been a research assistant at CITA, KADK, where he was involved in 

several research projects such as CM5 – Inflated Restraint, led by 

Associate Professor Phil Ayres, and EU FET project flora robotica. Petras 

holds a master’s degree in architecture from the Vilnius Academy of Arts 

(VAA) and worked in different international offices such as DMAA, Austria 

and CEBRA, Denmark.

Mary Katherine Heinrich is a PhD Fellow at CITA, KADK, funded by the 

EU FET project flora robotica.

Phil Ayres is an architect, researcher and educator. He joined CITA in 

2009 after a decade of teaching and research at the Bartlett, UCL, and 

completing his PhD in Denmark at the Aarhus School of Architecture. 

Phil is the editor of the title Persistent Modelling – extending the role of 

architectural representation published by Routledge (2012), and a principle 

Investigator on the EU FET project flora robotica. 




