
670

High Resolution Representation and
Simulation of Braiding Patterns

1	 Examples of simulated complex
braid morphologies.

Mateusz Zwierzycki
CITA/KADK

Petras Vestartas
CITA/KADK
Mary Katherine Heinrich
CITA/KADK
Phil Ayres
CITA/KADK

1

ABSTRACT
From the hand-crafted to the highly engineered, braided structures have demonstrated broad
versatility across scales, materials, and performance types, leading to their use in a plethora of
application domains. Despite this prevalence, braided structures have seen little exploration within
a contemporary architectural context.
Within the flora robotica project, complex braided structures are a core element of the architectural
vision, driving a need for generalized braid design modeling tools that can support fabrication. Due
to limited availability of existing suitable tools, this interest motivates the development of a digital
toolset for design exploration. In this paper, we present our underlying methods of braid topology
representation and physics-based simulation for hollow tubular braids. We contextualize our
approach in the literature where existing methods for this class of problem are not directly suited to
our application, but offer important foundations. Generally, the tile generation method we employ
is an already known approach, but we meaningfully extend it to increase the flexibility and scope of
topologies able to be modeled. Our methods support design workflows with both predetermined
target geometries and generative, adaptive inputs. This provides a high degree of design agency by
supporting real-time exploration and modification of topologies. We address some common phys-
ical simulation problems, mainly the overshooting problem and collision detection optimization, for
which we develop dynamic simulation constraints. This enables unrolling into realistically straight
strips, our key fabrication-oriented contribution. We conclude by outlining further work, specifically
the design and realization of physical braids, fabricated robotically or by hand.

671ACADIA 2017 | DISCIPLINES + DISRUPTION

2

4

INTRODUCTION
This paper presents a system for the representation and simula-
tion of braid topologies. Here, we briefly describe the motivation
for modeling braid in a way that is useful for design and fabri-
cation workflows, and summarize our methods developed to
address that motivation.

The work has been developed in the context of the flora robotica
project (http://www.florarobotica.eu; Hamann et al. 2015), which
focuses on symbiotic relationships between biological plants
and robotic elements in an architectural design context (see
Figure 2). The architectural structures created within the project
incorporate both living and nonliving material in structural roles,
with their organization governed by both robotic controllers
and user interaction. This application requires that mechanical
scaffolds are not predesigned and prefabricated, but rather
self-organize continuously in situ through a distributed construc-
tion process. The scaffolds may be collaboratively fabricated by
stationary, centrally-controlled braid machines such as industrial
braid machines (Smith 1989; Haehnel and Li 1998; Richardson
1993), swarms of distributed mobile braiding robots (Heinrich
et al. 2016), or manual braiding by human users. Braid is used
as an overall logic for the mechanical system in flora robotica
due to its properties of robustness, scaleless organization, and
flexibility in material and pattern. It is applicable from build-
ing-sized structural scaffolds to soft-body robot arms, and can
seamlessly incorporate mechanical filaments, living plants, and
embedded electronics. In industrial manufacturing contexts
(where braid's applications are as varied as rope, bicycle frames,
and medical devices), braid is defined as an interlacing pattern of
three or more continuous filaments, with all filaments performing
functionally equivalent roles and spanning the length of the braid
(Wulfhorst et al. 2006; Mitchell 1967); this is differentiated from
manufactured weave, which contains distinct functional groups
of warp and weft (Kawabata et al. 1973). Using the basic logic
of braid, an expansive variety of shapes can be fabricated by
changing only the pattern of interlacing filaments (see Figure 3).
The resulting structures can include such features as branching,
holes, caps, sockets, and flexible joints (flexure bearings).

The focus of this paper is the fabrication-oriented modeling
and simulation of hollow tubular braids (see Figure 4), incorpo-
rating the above features and properties. We focus on this type
because we consider hollow tubular braids to offer structural
potential at an architectural scale while maintaining flexibility
of topology (see Figure 3). First, we discuss the state-of the-art
of relevant representation methods (subdivided into pattern
generation and geometrical representation) and simulation
methods. Second, we present our braid representation method,
subdivided into two workflows. The pattern generation workflow

3	 Examples of hand-produced
complex braid morphologies.

4	 A three-step method presented
in the paper. From left: pattern
generation workflow, geometry
represenation workflow, simulation.

3

2	 Hand-produced braids acting as
scaffolds for plants and robotic
elements in the context of an early
exploration for the flora robotica
project

672

uses a designed tile dictionary to assign tiles according to edge
colorings, while the geometry representation workflow inter-
prets the generated patterns into a mesh prepared for physical
simulation. Third, we present our simulation method, focusing on
our dynamic constraints developed to address overshooting and
hash-based line-line collision detection. Fourth, we present the
results of the representation and simulation methods, assessed
according to performance evaluation metrics, including side-
by-side comparisons between our modeling results and the
manufactured prototypes that we targeted for representation.
Finally, we discuss possible directions for future work, including
automated fabrication, automated generation of tile order,
dynamic remeshing during simulation, and tying the simulation
results to structural analysis. These realms of future work are also
relevant to our overall motivation for braid modeling, described
above.

The primary contribution of the representation and simulation
methods we present here is to provide a highly flexible braid
modeling toolset that can support a variety of design and fabrica-
tion workflows.

STATE-OF-THE-ART
The representation and simulation scopes of this paper cover
problems extensively raised in the literature, through modeling
of weave, braid, knit and related patterns. Therefore, the
state-of-the-art is presented in three parts: pattern generation,
geometrical representation of such patterns, and simulation of
textiles and other woven or braided materials.

Pattern Generation
The weaving pattern generation algorithm originated in Mercat
(2001) and utilized in Kaplan and Cohen (2003) is defined as
follows (based on pseudocode presented by Kaplan and Cohen):
1) begin with a planar graph; 2) define the midpoint of each
graph edge as a ‘crossing’; 3) connect the ‘crossings’ and define
them as ‘threads;’ 4) expand ‘threads;’ and 5) offset heights of
the ‘threads’ according to the order in which they overlap. This
algorithm, through applications presented in the relevant papers,
is able to generate a variety of patterns. Its ability to generate
complex geometry such as Celtic knots has been demonstrated.
In Akleman et al. (2009), the authors introduce a combinato-
rial structure called graph rotation systems as a formalization
of Mercat’s method described above. They analyze the regular,
semi-regular and irregular tilings produced with that algorithm.
The works described above are further cited in Mallos (2009),
which presents a triaxial weaving method for arbitrary orientable
meshes using a single tile. The method therefore simplifies the
weaving pattern generation problem into a problem of finding
a universal tile design. An approach presented in Yuksel et al.

(2012) utilizes a predefined set of tiles with two types of edges/
directions distinguished (course and wale edge). Those types are
introduced so that the resulting knitting pattern follows rele-
vant fabrication constraints. The presented design interface is
composed of two stages: low-poly direction assignment (labeling)
and yarn-level pattern definition (stitch pattern definition), either
with manually introduced modifications or predefined patches.

In summary, the literature presents two general approaches for
woven or braided pattern generation, used in a multitude of
ways. The two approaches are procedural generation of patterns,
as in Mercat (2001) or Kaplan and Cohen (2003) and pattern
production with a predefined set of tiles applied over discrete
two- or three-dimensional geometry, as in Yuksel et al. (2012) or
Mallos (2009).

Geometry Representation
Pattern generation can itself be the end objective, but in some
cases the result is then used for physical simulation of textiles
or fabrics. In other words, the generated pattern can feed a
geometrical model for simulation of a physical object. The end
objective of the method (either geometry per se or geometry
for simulation) defines the characteristics of that representation
and the properties that it should necessarily possess. If the aim is
geometry directly, then a necessary property is aesthetic appeal,
while if the aim is geometry for simulation, its properties must
meet the criteria of the relevant simulation engine. In the system
described in Kaplan and Cohen (2003), a two-dimensional Cubic
Hermite spline is defined using control points constructed with
Mercat’s method. After establishing the relationships between
curves (the under-over pattern and the terminus points), the
curves are then inflated to give the braids the desired thickness.
If there are any images introduced in the knot (terminus points),
the method has to order the under-over pattern afterwards,
which introduces a backtracking procedure into the geometry
creation method. A visually appealing three-dimensional geom-
etry is the aim of the Akleman et al. (2009) method. The first
step in constructing the geometry is to create a low-poly control
mesh/polyline which is then used to construct splines or ribbons.
The ribbon/yarn collision avoidance problem is tackled with a
set of simple rules, minimizing the chances of collisions to a
negligible level. Quadratic B-splines and cubic Bezier surfaces are
used for the final stage of geometry creation, resulting in either a
better collision avoidance or a more appealing look. The method
presented in Yuksel et al. (2012) models fabric with two repre-
sentations. A low-resolution mesh is used to define directions,
and is then utilized by a high-resolution generation routine. The
generated high-resolution stitch-mesh is used to define a cubic
Catmull-Rom spline representation of the yarns, which becomes
the basis for yarn-level relaxation.

Braiding Patterns Zwieryzcki, Vestartas, Heinrich, Ayres

673ACADIA 2017 | DISCIPLINES + DISRUPTION

Simulation
A highly precise yarn-level simulation method is presented in
Yuksel et al. (2012). During each timestep, the algorithm looks for
intersections of spheres placed along the yarns. If the intersec-
tion is found, the same check is performed with smaller spheres
either until the intersection is resolved or until the lower limit
of the radius is reached. Because of the iterative process for
calculating varying radii sphere-sphere collisions, it is relatively
slow. The physics engine presented in Jakobsen (2001) is known
for its stability and speed of execution. While accuracy is not its
main objective, it is visually believable and therefore useful in
computer graphics. Its success is built upon the methods incor-
porated within it, including a Verlet integration scheme, a simple
constraint solver using relaxation, modeling of rigid bodies as
particles with constraints, and handling of collisions and pene-
trations using projections. The ‘ShapeOp’ (see http://shapeop.
org) geometry processing and optimization framework has its
foundations in projection-based approaches (Bouaziz et al. 2012;
Bouaziz et al. 2014). The constraints in this framework define
relationships between subsets of points, which are then satisfied
through projections. Due to an absence of momentum induced
oscillations, the convergence in this method occurs considerably
faster. The framework is characterized by its robustness, speed,
and generalized definition of constraint. Spatial Hashing applied
for collision detection is described in Teschner et al. (2003). The
algorithm divides three-dimensional space into fixed-size boxes
(cells) and assigns the vertices to them. Checking for intersec-
tions is therefore performed on a hash table, with quick search
times and the possibility to check for both self-collisions and
collisions between distinct objects.

REPRESENTATION METHOD
Our method for braid representation is subdivided into two
workflows: braiding pattern generation and geometrical repre-
sentation of those patterns.

Pattern Generation Workflow
Our pattern generation method takes inspiration from many of
the methods in the existing literature. The primary advantages
achieved by the presented method are simplicity and general-
izability. These provide an increased flexibility in the topologies
that can be represented. The implementation is tailored to work
with orientable mesh surfaces, therefore the descriptions will be
following the particular logic of the braiding patterns. Though
the scope of this paper focuses on braiding patterns in 2D (i.e.
hollow tubular braids), the approach works conceptually for other
problem classes, such as 3D patterns and reciprocal structures.
The complexity of braiding patterns presented here (such as
those in Figure 3) cannot be simply classified as plain weave,
braid or triaxial braiding. Our presented solution is based on

Mercat’s method, but it is extended in a way that supports many
additional types of braiding and weaving patterns, as well as the
mixing of these two pattern categories. The advantage of the
presented approach is the implicit nature of under-over relation-
ships, which result from the set of tile generation rules described
in subsection Tile Design. In general, this method uses a precom-
puted set of tiles, which, in their underlying logic, combine
different approaches seen in the literature. The method works
directly on a mesh, and thus whenever used, the terms faces and
edges refer to the mesh geometry rather than to a graph.

Edge Coloring
The first step in the pattern generation workflow is to define
how many types of interfaces are possible between the tiles
(i.e., determining the possible transition cases). Figure 5 shows
the three cases in our implementation, which are: no connection
between the faces (Empty), connection with two strips sepa-
rated (Plain), and connection with two strips passing through the
middle point (Braid, as in Mercat’s method). The interfaces are
hereafter interchangeably referred to as colors.

Tile Dictionary
Once the number of colors is defined, the second step in the
pattern generation workflow is the utilization of the tile dictio-
nary. It is necessary for this purpose to define the number of
polygon types. (Though the dictionary and implementation
encompass both triangles and quads, for clarity, the description
will refer only to quads.) Given the number of polygon sides to

5

5	 Interfaces used in the implementation (from left): Empty, Plain and Braid

6	 An example of a complete set of tiles for 3 colors and 4-sided polygons. 24 tiles
guarantee all the combinations of colors, given the possibility to rotate them.

6

674

be colored and the number of possible colors, a finite set of color
combinations becomes evident. The precise number of combi-
nations can be calculated using Polya’s Counting Theorem (Polya
and Read 1987). For three colors and four-sided polygons, the
number of possible color combinations after reducing the rota-
tional symmetries is equal to 24. The implementation uses tuples
to identify a particular color combination. By sorting the tuples,
the user gets a convenient overview of the complete set, useful
for editing the predefined tiles. An example tile set can be seen
in Figure 6. This dictionary is therefore a Wang tile set (Wang
1961), with all the possible combinations of colors. However,
from the point of view of the user, it is more intuitive to consider
the colors of individual edges than particular tiles. It is important
to note that contrary to Wang tiles, the ones presented here can
be rotated, such that the number of combinations required for a
complete set is reduced by rotational symmetry.

Tile Design
While the edge colors describe the overall pattern, the tiles have
to be designed with the interfaces in mind, so that the resulting
pattern has a desired under-over order (in this implementation
it’s a plain weaving order). There is a potentially infinite amount
of weaving patterns with a particular color combination, so
the rules specified here have to apply only to the strips which
are taking part in the tile-to-tile interface (contrary to cycles
contained wholly within a tile). As mentioned in the Edge Coloring
subsection, there are three interface types in the presented
implementation, from which two have to be resolved - the Braid
and the Weave interface (Empty transition is skipped because it
is an obvious case). The blue color hereafter represents the under
state and the over strips are marked with red. In the case of the

Braid interface the coloring is straightforward—the under point
is marked with blue color as seen in Figure 7 and the over point
is red. It is important to design tiles in a way following the colors
and their meaning. Not crossing over with a red strip means
that the blue part will not consequently go under (Fig.7). The
meeting points have to be modified in case of the Plain interface.
This time each point has 2 colors indicating the order of the
strip, which means that the strip changes its order after passing
through it. Note the left and right points are marked differently,
therefore mirroring the tile will produce a wrong interface as
seen in Figure 7. Once all the tiles are solved, it is possible to tile
any orientable surface with any combination of colors. A small
sample of colorings and resulting patterns is shown in Figure 16.

Geometry Representation Workflow
The second part of our braid representation method—geometry
representation—interprets the patterns generated from our edge
colorings and tile dictionary. Through construction and discret-
ization, the patterns are represented geometrically such that they
can be consistently used as inputs to physical simulation.

Construction and Discretization
While it is possible to define a continuous parameter space for
geometry construction as shown in Akleman et al. (2009), this
implementation uses a point grid to ease the tile generation
process. This makes the task of strip designing less error-prone.
Each strip is declared as a series of grid-based coordinates. The
grid with the underlying strips is mapped onto a B-spline surface
constructed from the 4 corner points of a particular mesh quad.
There is a small chance of self-intersection, particularly when the
target face is nonplanar. The under-over order is expressed by

Braiding Patterns Zwieryzcki, Vestartas, Heinrich, Ayres

7

8

9

7	 A usage example of the implemented interface schemes. On the left side is the
Plain interface, while Braid is shown to the right. The Plain interface is broken
by mirroring the leftmost tile (bottom image), making the point coloring logic
inconsistent - matched connection points have opposite colors. Mirroring the
rightmost tile (bottom image) makes the Braid interface meaningless, as the
marking of the strips doesn’t follow their order anymore.

8	 A set of examples showing some correct tile designs.

9	 From left: 90-degree right turn and 45-degree left turn.

675ACADIA 2017 | DISCIPLINES + DISRUPTION

physical prototypes - the straighter the unrolled strip, the closer
it is to the straight band used in the fabrication process. Collision
detection is a great impediment in the case of two-dimensional
manifolds. Because of the discrete simulation timestep and
geometry with no thickness, rapid checks of the side of collision
can be rendered impossible (depending on the approach). The
underconstrained nature of fabric simulations makes this problem
even harder, as a variety of types of collisions occur in such
simulations such as self-collisions, low and high speed collisions
etc. (Bridson et al. 2002).

Hash-based Line-Line Collision Detection
The spatial grid method (Teschner et al. 2003) is chosen for
collision detection as it is appropriate for range searches in the
dynamic environment of the simulation and it is not necessary to
rebuild the spatial grid for each frame. The initial mesh model as
established in the subsection "Construction and Discretization"
defines the relationships between the particles and utilizes the
naked edges of the mesh for collisions. The middle points of
those edges are stored in the hash table and used to efficiently
find nearby points, thereby greatly reducing the necessity to
perform time-consuming line-line collisions. The 3D bucket size
is set to half of the target length of the naked edge. While in the
initial geometry there are edges of various lengths, the solver
aims to equalize them to the target size and therefore the colli-
sion detection gets more robust over the time of the simulation
(Note, the collisions are getting more frequent over time as well).

Overshooting
Overshooting may be caused when the triangles of the mesh
are undesirably stretched or compressed by large percentages.

10

11

offsetting strip points by an interpolation of faces’ vertex normals.
The grid points are also used in the process of mesh drawing. As
shown in Figure 9, the point P1 is the point from the predefined
strip. The angle of the strip turn determines the choice of the
points P2 and the P3. The resulting variance of the mesh width
is later unified by the geometry solver. The last step is to divide
each of the strip segments into triangles, having in mind the final
length is dependent on the number of divisions as seen in Figure
10. While it is not the most intuitive way to set the final length
for each strip, it does provide a uniform and simple triangulation
method.

SIMULATION METHOD
Once a braid pattern has been generated and has been repre-
sented geometrically to prepare it for simulation, our simulation
method relaxes that pattern into a tightened braid that is both
visually realistic and able to be fabricated.

Overview of Geometry Solving and Simulation
In order to evaluate physical properties of the digital model
such as yarn-yarn interaction and self-weight, stripes cannot be
simplified to a gridshell-like model, because of lack of the torsion
induced by the flat strip geometry. As a result, mesh topology
is constructed from triangle meshes with varying density to
properly model the physical properties. The constraint-based
geometry solver Kangaroo2 (see http://kangaroo3d.com) plays a
critical role for the simulation and fabrication purposes. It both
enables prediction of the anticipated physical appearance, and
also forces the generated mesh strips into straight shape using
custom-coded constraints. By unrolling the mesh strip geometry
it is possible to evaluate how close the digital geometry is to the

10	 The geometry solver has an objec-
tive to equalize all the naked edges
to the same length. The discretiza-
tion of the initial geometry is one of
the input parameters for the solver
and determines the final length of
each of the strip segments (red and
blue).

11	 A collection of exemplary geome-
tries generated with the presented
method.

676

12

14

13

12	 Overshooting prevention. From
left: Initial mesh, first step in relax-
ation and incremental strip width
increase.

13	 Side-by-side comparisons of the
fabricated T-junction and the simu-
lation of the same topology (left),
and a fabricated ‘foot’ detail, where
a column made with Braid pattern
changes into Plain pattern.

14	 Unrolled strips before and after
geometry solving.

15 The low-resolution of the mesh
strip is what prevents it to form
in the expected shape. With a
proper remeshing technique the
tight corner would likely be fully
expressed.

A rule of thumb in computational mechanics is that to prevent
overshooting, a triangle edge should not change length by more
than 10% in a single time step (Caramana et al. 1998). This can
be enforced by either adaptively decreasing the time step or
decreasing the strain rate (the latter is used in this implemen-
tation). In usual cases, the projection solver would change the
length of each edge to the target value as quickly as possible
resulting in a loss of the under-over order within a few itera-
tions. A dynamic constraint is introduced as a solution for this
overshooting problem. It starts with the initial edge lengths and
incrementally adds up to reach the target. This results in longer
calculation time but helps to achieve extremely tight braids with
strips composed of well shaped isosceles triangles (see Figures
11 and 12).

RESULTS
The geometry obtained with the presented method closely
approximates the manufactured prototypes, as seen in the
comparison of isolated braid conditions of Figure 13. As the
problem of cloth and fabric simulation is by definition an

under-constrained problem, it is unreasonable to expect exactly
the same results. For the purpose of design exploration and
macro-scale behavior prediction, the presented approach seems
to be accurate enough. The side-by-side comparisons reveal the
same kinds of artifacts emerging in the real-world pieces and
their virtual models. Furthermore, the strips remain straight after
unrolling thereby satisfying a fabrication constraint (see Figure
14).

The simulation method was tested on a series of different
models and topologies, with varying complexity and triangle
count. When it comes to performance (tested on a mid-range
professional PC), thanks to the projection-based geometry
solver a simulation with a triangle count between 1,000-10,000
converges after 15-120 seconds depending on the case (Figure
11 b,c,d,g). Smaller forms like example (e) with few hundred trian-
gles, reach their final shape in a couple of seconds. The amount
of time required to reach equilibrium is also dependent on the
global shape, and with simple forms like example (a) (around
40,000 triangles) it took only 120 second to converge as well.

Braiding Patterns Zwieryzcki, Vestartas, Heinrich, Ayres

15

677ACADIA 2017 | DISCIPLINES + DISRUPTION

LIMITATIONS AND FUTURE WORK
The next step in the implementation of the methods shown in
this paper is to fully explore the relationship between design
and fabrication, including extension to automated fabrication
methods. The braided physical objects shown in this paper
(such as those in Figure 3) are manufactured by hand, and
thus the translation of our braid topology representations into
machine-readable code remains to be addressed.

Another future research direction is automated generation of
tile order in complex braided structures. The rules described in
the "Tile Design" subsection provide a complete framework to
build upon, such that approaches with various priorities could
utilize this framework to generate structures tailored to their
requirements. This paper’s implementation of the presented
pattern generation system focuses on weaving and braiding, but
a very similar logic could be used to generate many other types
of patterns. While tile-based texture generation is exhaustively
explored in the literature, the presented system adds another
layer of logic to it, making it possible to generate more complex

types of dependencies between the tiles. This can potentially
lead to research on structures such as reciprocal frames and
tensegrity, which stand out because of the fundamental impor-
tance of element-to-element relations.

In terms of simulation, future research directions include the
use of a dynamic remeshing method for the strips, which
could prevent undesired artifacts (as shown in Figure 15).
Implementing a remeshing technique similar to the one
presented in Narain et al. (2013) could resolve this issue and
add to the overall geometry relaxation quality by making the
unrolled strips even more similar to the desired straight shape
(as described in the "Simulation Method" section). Currently, the
line-line collisions are detected by measuring distances between
their middle points, as described in the "Hash-based Line-Line
Collision Detection" subsection. The authors plan to investigate
rasterization to fully allocate all the buckets containing the lines.

A broader direction for future research is the integration of
structural analysis. The nonlinear relaxation methods this

16

16	 Examples of various colorings
and the resulting strip topologies
constructed with the dictionary
shown in Figure 6

678

paper employs could be investigated for integration with Finite
Element Analysis. If the focus remains on hollow tubular braids,
this paper's understanding of braid as a configuration of indi-
vidual strips and their collisions could be usefully coupled with a
macro-scale representation relating to its shell-like behavior. This
combination may allow the exploration of relationships between
braid topology, braid material, and structural performance. The
stiffness of material used will impact shape, deformation, and
overall possibilities for architectural application.

As the implementation described here is design-oriented, it is
evident that it currently lacks a suitable user interface. With
the possibility to show both colorings and simulation results
simultaneously, it may be challenging to make it as user-friendly
as the interface in Yuksel et al. (2012). The authors have begun
to consider this problem in the context of an overall design work-
flow (Vestartas et al. 2017).

CONCLUSION
This paper has presented a braid representation method
through pattern generation and geometric representation of
those patterns, as well as a simulation method for relaxing the
geometry into tight and visually realistic braids. Generation of
patterns is greatly simplified with the proposed approach and
guarantees proper, plain order weaving/braiding patterns. This
approach meaningfully extends existing tile-based approaches.
It provides higher flexibility, noticeably expanding the range of
braid topologies that are able to be represented. The geometrical
representation of the patterns is based on mesh geometry, built
upon an underlying point grid. This reduces self-intersections in
the initial stage. The discretized geometry undergoes the simu-
lation of its physical behavior. The projection-based solver uses
dynamic constraints to achieve the final woven/braided shape
and straighten the strips. The achieved straightness of individual
unrolled strips is the key fabrication constraint that makes this
simulation approach a useful contribution, compared with other
publications and previous approaches.

Overall, the high flexibility of our braid representation and simu-
lation method is this paper's primary contribution, as it enables
open-ended exploration of design and fabrication workflows for
tubular braid. This has two impacts. First, it addresses our moti-
vation by laying a foundation for braided structures to be applied
to the architectural domain. Second, the general modeling
approach followed here could be usefully explored for flexible
architectural design of other pattern-based nonlinear structures.

ACKNOWLEDGMENTS
Project flora robotica has received funding from the European Union’s

Horizon 2020 research and innovation program under the FET grant

agreement, no. 640959.

The authors gratefully acknowledge the assistance of David Andres Leon

and Ashkan Cheheltan in the hand-production of the braided structures.

REFERENCES
Akleman, Ergun, Jianer Chen, Qing Xing, and Jonathan L. Gross. 2009.

"Cyclic Plain-Weaving on Polygonal Mesh Surfaces With Graph Rotation

Systems." ACM Transactions on Graphics 28 (3): 78.

Akleman, Ergun, Jianer Chen, and Jonathan L. Gross. 2015. "Extended

Graph Rotation Systems as a Model For Cyclic Weaving on Orientable

Surfaces." Discrete Applied Mathematics 193 (C): 61–79.

Bailey, Christopher. 2008. "Creating Celtic Knot Work From User

Parameters." Ph.D. thesis, The University of Bath.

Bouaziz, Sofien, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise,

and Mark Pauly. 2012. "Shape-Up: Shaping Discrete Geometry With

Projections." Computer Graphics Forum 31 (5): 1657–1667.

Bouaziz, Sofien, Sebatian Martin, Tiantian Liu, Ladislav Kavan, and Mark

Pauly. 2014. "Projective Dynamics: Fusing Constraint Projections for Fast

Simulation." ACM Transactions on Graphics 33 (4): 154.

.Branscomb, David, David Beale, and Royall Broughton. 2013. "New

Directions in Braiding." Journal of Engineered Fibres and Fabrics 8 (2):

11–24.

Bridson, Robert, Ronald Fedkiw, and John Anderson. 2002. "Robust

Treatment of Collisions, Contact and Friction For Cloth Animation." ACM

Transactions on Graphics 21 (3): 594–603.

Caramana, E. J., D. E. Burton, M. J. Shashkov, and P. P. Whalen. 1998.

"The Construction of Compatible Hydrodynamics Algorithms Utilizing

Conservation of Total Energy." Journal of Computational Physics 146 (1):

227–262.

Durupinar, Funda, and Uğur Güdükbay. 2007. "Procedural Visualization of

Knitwear and Woven Cloth." Computers and Graphics 31 (5): 778–783.

Haehnel, Rudolf, and Xing Li. 1998. Rotary braider machine. US Patent

5,775,195, filed January 14, 1997, and issued July 7, 1998.

Hamann, H., M. Wahby, T. Schmickl, P. Zahadat, D. Hofstadler, K. Stoy,

S. Risi, A. Faina, F. Veenstra, S. Kernbach, I. Kuksin, O. Kernback, P. Ayres,

and P. Wojtaszek. 2015. "Flora Robotica – Mixed Societies Of Symbiotic

Robot-Plant Bio-Hybrids." In IEEE Symposium Series on Computational

Intelligence, 1102–09. Cape Town, South Africa: SSCI.

Heinrich, Mary K., Mostafa Wahby, Mohammad D. Soorati, Daniel N.

Hofstadler, Payam Zahadat, Phil Ayres, Kasper Stoy, and Heiko Hamann.

2016. "Self-Organized Construction with Continuous Building Material:

Higher Flexibility Based on Braided Structures." In IEEE 1st International

Workshops on Foundations and Applications of Self* Systems (FAS*W),

154–59. Augsburg, Germany: FAS*W.

Braiding Patterns Zwieryzcki, Vestartas, Heinrich, Ayres

679ACADIA 2017 | DISCIPLINES + DISRUPTION

Igarashi, Yuki, Takeo Igarashi, and Hiromasa Suzuki. 2008. "Knitting a 3D

Model." Computer Graphics Forum 27 (7): 1737–43.

Jakobsen, Thomas. 2001. "Advanced Character Physics." In Proceedings of

the Game Developers Conference, 1–16. GDC.

Jung, K., S. J. Kim, T. J., Kang, K. Chung, and J. R. Youn. 2003. "Optimum

Modeling of 3-D Circular Braided Composites." In Proceedings of the 14th

International Committee on Composite Materials Conference, 14–18. San

Diego, CA: ICCM.

Kaldor, Jonathan M., Doug L. James, and Steve Marschner. 2008.

"Simulating Knitted Cloth at the Yarn Level." ACM Transactions on Graphics

27 (3): 65.

Kaplan, Matthew, and Elaine Cohen. 2003. "Computer Generated Celtic

Design." In Proceedings of the 14th Eurographics Workshop on Rendering,

9–19. Leuven, Belgium: EGRW.

Kawabata, S., Masako Niwa, and H. Kawai. 1973. "The Finite Deformation

Theory Of Plain-Weave Fabrics Part I: The Biaxial Deformation Theory."

Journal of the Textile Institute 64 (1): 21–46.

Mallos, James. 2009. "How to Weave a Basket of Arbitrary Shape." In

Proceedings of the 8th Interdisciplinary Conference of the International

Society of the Arts, Mathematics, and Architecture, 13–19. Albany, NY:

ISAMA.

McCann, J., L. Albaugh, V. Narayanan, A. Grow, W. Matusik, J. Mankoff,

and J. Hodgins. 2016. "A Compiler For 3D Machine Knitting." ACM

Transactions on Graphics 35 (4): 49.

Mercat, C. 2001. "Les entrelacs des enluminure celtes." Dossier Pour La

Science 15.

Mitchell, R., 1967. Braid and method of making it. US Patent 3,323,406.

Filed April 7, 1964, and issued June 6, 1967.

Narain, Rahul, Tobias Pfaff, and James F. O’Brien. 2013. "Folding and

Crumpling Adaptive Sheets." ACM Transactions on Graphics 32 (4): 51.

Pólya, G., and R. C. Read. 1987. Combinatorial Enumeration Of Groups,

Graphs, And Chemical Compounds. New York: Springer-Verlag..

Qing, Xing, Gabriel Esquivel, Ryan Collier, Michael Tomaso, and Ergun

Akleman. 2011. "Weaving Methods in Architectural Design." In ACADIA

2011 Regional: Parametricism, 59–66. Lincoln, NE: ACADIA.

Richardson, Donald. 1993. Maypole Braider Having a Three Under and

Three Over Braiding Path. US Patent 5,257,571. Filed January 28, 1993,

and issued November 2, 1993.

Smith, Michael F. 1989. Apparatus and method for automated braiding of

square rope and rope product produced thereby. US Patent 4,803,909.

Filed April 13, 1987, and issued February 14, 1989.

Teschner, M., B. Hiedelberger, M. Müller, D. Pomeranets, and M. Gross.

2003. "Optimized Spatial Hashing for Collision Detection of Deformable

Objects." In Proceedings of the 8th Workshop on Vision, Modeling, and

Visualization, 47–54. Munich, Germany: VMV.

Vestartas, P., M. K. Heinrich, M. Zwierzycki, and P. Ayres. 2017. "Design

Tools and Workflows for Braided Structures." In Design Modelling

Symposium 2017 (accepted paper, not yet published)

Wang, Hao. 1961. "Proving Thorems By Pattern Recognition II." Bell

Systems Technical Journal 40 1–41.

Wulfhorst, Burkhard, Oliver Maetschke, Markus Osterloh, Alexander

Büsgen, and Klaus-Peter Weber. 2006. Textile Technology. Wiley Online

Library.

Xing, Qing, Ergun Akleman, Jianer Chen, and Jonathan L. Gross. 2010.

"Single-Cycle Plain-Woven Objects." In Proceedings of the Shape Modeling

International Conference, 90–99. Aix en Provence, France: SMI.

Yuksel, Cem, Jonathan M. Kaldor, Doug L. James, and Steve Marschner.

2012. "Stitch Meshes For Modeling Knitted Clothing With Yarn Level

Detail." ACM Transactions on Graphics 31 (4): 37.

Zhou, Kun, Xin Huang, Xi Wang, Yiying Tong, Mathieu Desbrun, Baining

Guo, and Heung Yeung Shum. 2006. "Mesh Quilting For Geometric

Texture Synthesis." ACM Transactions on Graphics 25 (3): 690–97.

IMAGE CREDITS
Figure 2: Anders Ingvartsen, 2016

All other drawings and images by the authors.

Mateusz Zwierzycki is an architect, developer and Grasshopper user.

He is author or co-author of such libraries and plugins as Anemone,

Volvox, Starling, and most recently Owl. He is also the founder of Object

(theObject.co), a long time workshop tutor, teacher and a parametric

design popularizer.

Petras Vestartas is a PhD student at IBOIS, EPFL. He has previously

been a research assistant at CITA, KADK, where he was involved in

several research projects such as CM5 – Inflated Restraint, led by

Associate Professor Phil Ayres, and EU FET project flora robotica. Petras

holds a master’s degree in architecture from the Vilnius Academy of Arts

(VAA) and worked in different international offices such as DMAA, Austria

and CEBRA, Denmark.

Mary Katherine Heinrich is a PhD Fellow at CITA, KADK, funded by the

EU FET project flora robotica.

Phil Ayres is an architect, researcher and educator. He joined CITA in

2009 after a decade of teaching and research at the Bartlett, UCL, and

completing his PhD in Denmark at the Aarhus School of Architecture.

Phil is the editor of the title Persistent Modelling – extending the role of

architectural representation published by Routledge (2012), and a principle

Investigator on the EU FET project flora robotica.

