
15

Evolved Control of Natural Plants: Crossing the Reality Gap

for User-Defined Steering of Growth and Motion

DANIEL NICOLAS HOFSTADLER, University of Graz

MOSTAFA WAHBY, Paderborn University and University of Lübeck

MARY KATHERINE HEINRICH, Centre for IT and Architecture

HEIKO HAMANN, Paderborn University and University of Lübeck

PAYAM ZAHADAT, University of Graz

PHIL AYRES, Centre for IT and Architecture

THOMAS SCHMICKL, University of Graz

Mixing societies of natural and artificial systems can provide interesting and potentially fruitful research

targets. Here we mix robotic setups and natural plants in order to steer the motion behavior of plants while

growing. The robotic setup uses a camera to observe the plant and uses a pair of light sources to trigger

phototropic response, steering the plant to user-defined targets. An evolutionary robotic approach is used

to design a controller for the setup. Initially, preliminary experiments are performed with a simple prede-

termined controller and a growing bean plant. The plant behavior in response to the simple controller is

captured by image processing, and a model of the plant tip dynamics is developed. The model is used in

simulation to evolve a robot controller that steers the plant tip such that it follows a number of randomly

generated target points. Finally, we test the simulation-evolved controller in the real setup controlling a nat-

ural bean plant. The results demonstrate a successful crossing of the reality gap in the setup. The success of

the approach allows for future extensions to more complex tasks including control of the shape of plants and

pattern formation in multiple plant setups.

CCS Concepts: • Computing methodologies → Neural networks; Modeling methodologies; • Computer

systems organization → Evolutionary robotics; Sensors and actuators;

Additional Key Words and Pharses: Bio-hybrid, reality gap, closed-loop control, image sampling, pho-

totropism, phaseolus vulgaris

ACM Reference format:

Daniel Nicolas Hofstadler, Mostafa Wahby, Mary Katherine Heinrich, Heiko Hamann, Payam Zahadat, Phil

Ayres, and Thomas Schmickl. 2017. Evolved Control of Natural Plants: Crossing the Reality Gap for User-

Defined Steering of Growth and Motion. ACM Trans. Auton. Adapt. Syst. 12, 3, Article 15 (September 2017),

24 pages.

https://doi.org/10.1145/3124643

Project “flora robotica” has received funding from the European Union’s Horizon 2020 research and innovation program

under the FET grant agreement, no. 640959.

Authors’ addresses: D. N. Hofstadler, P. Zahadat, and T. Schmickl, Artificial Life Lab, Department of Zoology, University of

Graz, Universitätsplatz 2, A-8010 Graz, Austria; emails: {daniel.hofstadler, payam6.zahadat, thomas.schmickl}@uni-graz.at;

M. Wahby and H. Hamann, Institute of Computer Engineering, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck,

Germany; emails: {wahby,hamann}@iti.uni-luebeck.de; M. K. Heinrich and P. Ayres, Centre for IT and Architecture, Royal

Danish Academy of Fine Arts, School of Architecture, Philip de Langes Allé 10, 1435 København K, Denmark; emails:

{mhei,phil.ayres}@kadk.dk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

2017 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 1556-4665/2017/09-ART15 $15.00

https://doi.org/10.1145/3124643

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

https://doi.org/10.1145/3124643
https://doi.org/10.1145/3124643

15:2 D. N. Hofstadler et al.

1 INTRODUCTION

The concept of mixed societies of living systems and autonomous robots self-organizing with each
other and forming bio-hybrid systems has attracted a lot of interest over the past years. While the
large concentration of work in this area deals with combining animals and robots (e.g., [3, 7, 12,
13, 26]), we are interested in mixed societies of plants and robots. Our long-term objective in the
context of the EU-funded project flora robotica [10, 14] is to bring together the best aspects of both
worlds and to generate synergies between them. Plants are efficient in growing. They sense their
dynamic environment and react to it by changing their shape in a way that benefits the overall
structure [11]. Robots, on the other hand, are programmable. We can build robots and program
them such that they influence the growth of plants by imposing desired stimuli. They can also
extend the plants’ sensing and decision-making capabilities.

One of the challenges in this mixed-society approach is the extremely different time scale of
plant growth control that differs in several magnitudes from motion control of mobile robots. In
comparison to many other living systems, plants are slow in many of their activities including, of
course, their growth. For example, the common bean plant (Phaseolus vulgaris), which is consid-
ered to be a fast-growing plant, grows on average 3cm per day [4]. In addition to growth, plants
also show motion, which is often ignored due to its low speed. Bean shoots’ intrinsic motion (cir-
cumnutation [22]) allows the plant tips to explore their local environment and—together with
phototropism (i.e., directed growth toward or away from light [6])—influence growth to approach
more preferable regions. Plants’ motion seems underestimated by many, likely because their speed
is very slow in relation to time scales of human perception. However, on these slow time scales
of plants’ activities, the speed of motion is still considerably faster than the speed of growth. For
example, according to our preliminary experiments, bean plants (longer than 20cm) bend toward a
light source with a velocity of up to 4.4mm/min. Angular velocities of the intrinsic circumnutation
reported in literature are even larger [17].

Other challenges of this bio-hybrid approach concern the tasks of sensing and actuation by the
robotic side of the system. The robot needs to detect the plant’s position to allow for closed-loop
control. The robot also needs to impose appropriate stimuli at appropriate times to influence the
plant in the desired way.

In this article, we investigate how the motion and growth of a plant can be influenced by a
robotic hardware setup that uses light as an attractive stimulus. The light sources in the setup are
controlled by a closed-loop controller detecting the plant’s tip and reacting to its position such
that the tip reaches a number of target points. For that, we first create an appropriate simulator
that addresses relevant features of the plant growth based on the data collected from a set of
preliminary experiments with the plant and the light sources controlled by a predefined open-loop
controller.

There is a vast variety of plant models in the literature. Most models from the field of plant
science focus on partial aspects of plant systems or are too detailed and too complex for use in
robot controllers (e.g., [1]). In the context of research in self-organization (e.g., in artificial life),
a number of usefully low-complexity abstract models of plant growth have been reported. In L-
systems [16], a set of rules are iteratively applied to a string of symbols (grammars). The rules
process symbols and expand the string, whereas certain symbols are interpreted as geometrical
structures. The L-system is extended, for example, in swarm grammars [23], such that the reaction
of the plants to their environmental stimuli is included in the model. The individual nodes then act
as autonomous reactive agents that can be attracted to light sources. Bending of plants (motion)
is approximated by considering the stiffness of the connected stem elements and the attraction
by the light source in the environment [9]. In [28] and [21], abstract branching trees are derived
from the inverse computation based on polygon meshes of the geometry of an actual tree and its

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

Evolved Control of Natural Plants 15:3

variations. The plant growth is also modeled focusing on the self-organization and competition
between branches and it is used as a distributed controller driving the development of artificial
structures [27].

Despite the variety of available models, we follow a purpose-specific data-driven approach that
is based on acquired data of the plant behavior in our actual setup. We find that creating a model
specific to our purpose is very efficient and successful as reported in the following. Hence, our
approach could serve as a positive example for future applications in similar contexts. First, we
build a simple model of the combined growth and motion behaviors of our plant, based on data
extracted from processed images taken in our experimental setup. Then, we use the model to
simulate plant behavior and apply evolutionary computation methods to generate our closed-loop
controller of the bio-hybrid.

Evolutionary methods have been successfully applied to generate controllers in many robotic
applications [2]. The evaluation of an individual controller’s fitness can be a costly and espe-
cially time-consuming task where embodied evolution [25] is applied and the controller is directly
evolved on the actual hardware. Hence, we simplify the process by evolving the controllers based
on the derived models in order to achieve a considerable speedup. The drawback is the so-called
reality gap problem [15]. It refers to the often experienced problem that controllers developed
in simulation may perform poorly in reality due to limitations of the simulation and unknown
features in reality.

In the following,1 we apply evolutionary methods to evolve a closed-loop controller directing
the tip of a bean plant by using a pair of light sources. The task is to have the plant tip approach a
set of different user-defined target points in space by switching the light sources on and off with
appropriate order and timing. The target points are generated independently during runtime and
the controller of the light sources acts according to the position of the current target point and
the current plant tip position. Controllers are evolved based on a model of tip motion that we
obtain from processing the data collected by image sampling from a preliminary experiment setup
using real plants and a trivial open-loop controller. The position of the plant tip and the current
status of the light sources are collected while the light sources are alternated in a regular pattern
controlled by the trivial nonreactive controller. From the collected set of plant tip positions,
we build the simple model of the combined growth and motion behavior of a bean plant’s tip
in response to the light sources. The model is then used to evolve a closed-loop controller for
the light sources for directing the bean’s tip such that the tip reaches any randomly generated
target that is in the reach of the plant over the time of the experiment. We use these evolved
controllers in a real experimental setup and successfully control the real plant’s tip to reach
arbitrary targets. The results show that the reality gap in this setup is crossed with our applied
approach.

Having crossed the reality gap for this task, we discuss future work based on this approach. We
discuss extending our image processing method from a single-point description of the plant tip
to a 10-point description of the full plant stem geometry. This could allow the tip-motion model
to be extended to a full stem-dynamics model. In the future, we will combine this stem model
with cameras and image sampling in two axes. This could allow us to evolve robot controllers
for more complicated tasks, such as 3D target patterns or obstacle avoidance by the growing
plants.

1This article is an extended version of [24]. The previous article is extended by (1) extending the controller such that it can

adaptively direct the plant to reach unforeseen and randomly positioned targets instead of fixed predetermined targets; (2)

changing the plant model in order to achieve faster, more memory-efficient, and more accurate results; and (3) improving

the image processing method for tip detection.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

15:4 D. N. Hofstadler et al.

Fig. 1. Bio-hybrid system setup. The setup is housed in a grow box, with the plant near the back wall and
the camera near the front wall, facing the plant. A pair of light sources that provide stimuli are mounted
above the plant on either side, right and left, and a flash for the camera hangs directly above the plant.

2 METHODS

Our evolutionary robotics approach to the task of steering plant growth and motion follows the
methods described in this section. First, the bio-hybrid system setup shown in Figure 1 is used in
both preliminary data-gathering experiments and reality gap experiments. The preliminary exper-
iments record the growth patterns of plants exposed to light sources from trivial manually defined
controllers, and a sampling method interprets the images into a raw dataset of plant tip positions.
Then, this data is used to build a purpose-specific model of tip motion that enables simulation of
tip trajectories in our setup under any given light source sequence. Finally, controllers are evolved
in simulation using the tip-motion model for the task of steering a plant tip to reach sequences of
arbitrary user-defined targets. The method used for generation of user-defined targets is described,
along with the two types of fitness functions used for evolution.

2.1 Bio-Hybrid Setup

The bio-hybrid system contains one biological plant that has a simple symbiotic relationship with
centrally controlled robotic elements. The robot influences the plant by triggering directional light
sources in its environment, and the plant influences the robot through on-board image sampling
that detects plant dynamics.

As in the previous work [24], the plant in this setup is the common bean plant (Phaseolus vul-
garis L. var. nanus cf. Saxa, a bush bean2), germinated in commercial soil intended for growing
vegetables.3 The bean is planted in a 1.5-liter pot, with a top diameter of 15cm and soil level of
12cm from the base.

The robotic portion of the system is subject to a centralized controller and consists of the fol-
lowing elements: two NeoPixel LED strip lamps4 for providing stimuli; a camera module5 to record

2https://shop.nebelung.de/gemuesesamen/bohnen/buschbohnen-saxa.html.
3FloraSelf Gemüse- und Tomatenerde ohne Torf (Floragard Vertriebs-GmbH).
4Adafruit NeoPixel RGB LED strips (https://www.adafruit.com/products/1506).
5Raspberry Pi camera module (https://www.raspberrypi.org/products/camera-module/).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

https://shop.nebelung.de/gemuesesamen/bohnen/buschbohnen-saxa.html
https://www.adafruit.com/products/1506
https://www.raspberrypi.org/products/camera-module/

Evolved Control of Natural Plants 15:5

the growth and motion of the plant by capturing photographs; an LED light bulb,6 which provides
flash for capturing photographs; and a Raspberry Pi7 as a central control and processing unit. A
NeoPixel strip contains 144 individually controllable integrated RGB LEDs,8 with peak emission
at wavelengths λmax 630, 530, and 475nm, respectively. Each LED consumes 0.24W when emitting
white light at full power, giving 18 lumens. As we only trigger the two NeoPixel strips individually
(never simultaneously), we can expect a total power consumption of up to approximately 35W.

Various scripts were developed to detect the plant tip, run the evolved artificial neural net-
works (ANNs), control the light sources, and regularly upload the captured photos and log files to
a network-attached storage device (NAS). The scripts run on the Raspberry Pi as background pro-
cesses managed by systemd.9 The ZeroMQ10 library is used to allow the necessary communication
among these processes (e.g., sending a flashlight request before capturing a photo).

The bio-hybrid system is contained in a commercial grow box of dimensions 120 × 120 × 200cm
in width, depth, and height (see Figure 1). The standard grow box is modified, with the interior
walls clad in matte black foam board to reduce light reflections and provide a smooth, consistent
background that is in high contrast to the plant. The potted bean plant is positioned at the center
of the back of the grow box, such that the plant’s root-shoot transition (i.e., the location where
the germinated bean protrudes from the soil) is at about 12cm height, 8cm from the back wall, and
60cm from each side wall.

The camera module is positioned near the front wall of the grow box, at a height of 32cm. It
faces the plant, with the focal plane parallel to the back wall, as diagrammed in Figure 1. This
placement positions the camera approximately 74cm from the plant and 82cm from the back wall.
The flashlight used when recording photographs hangs at a height of 80cm from the base of the
potted plant and is centered over the pot. The two NeoPixel strips are coiled in cylindrical shapes
to form two LED strip lamps and affixed to the back wall of the grow box at a height 30cm above
the root-shoot transition and 35cm to either side (see Figure 1).

2.2 Model Setup

The simple data-driven model of plant growth and motion, through which we project plant tip
trajectories in simulation and inform the evolution of our bio-hybrid controllers, is constructed
according to the method described in this section. Our purpose-specific tip-motion model is based
on time-lapse photographs of preliminary plant growth experiments. These images are sampled
to detect the xy-coordinates of the plant tip, building a dataset of timestamped tip positions under
one of two triggered light sources. We use this data to calculate the time-normalized tip-motion
vectors of a subsequent time step according to the current bio-hybrid system configuration. These
motion vectors are used, in conjunction with statistical functions incorporating the stochasticity
appropriate to plant growth, to construct our model of plant tip dynamics.

2.2.1 Preliminary Plant Experiments. Our tip-motion model builds on our prior work [24] by us-
ing the same group of photographed preliminary experiments to create a dataset of plant growth
and motion. These preliminary experiments (described here according to [24]) use a predeter-
mined open-loop controller that simplistically alternates the two light sources over regular time
intervals. There are six repetitions of the experiment. In each repetition, the light source alternates
every 6 hours, and the experiment is photographed at 5-minute intervals. The plants’ tip position

6Philips LED bulb 8718696490860 (http://www.philips.co.uk/c-p/8718696490860/).
7Raspberry Pi 3 Model B (https://www.raspberrypi.org/products/raspberry-pi-3-model-b/).
8WS2812 integrated light source (https://cdn-shop.adafruit.com/datasheets/WS2812.pdf).
9Systemd is a system and service manager for Linux operating systems.
10http://zeromq.org/.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

http://www.philips.co.uk/c-p/8718696490860/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
http://zeromq.org/

15:6 D. N. Hofstadler et al.

Fig. 2. Compiled time-lapse photographs of experiments. From left to right, experiments 1, 2, 3, 4, 5, and 6.
Photographs originally published in prior work [24].

and stem geometry over time (see compiled images for each experiment in Figure 2) show that
their dynamics are substantially influenced by both growth and motion.11 Despite the consistent
setup conditions in each repetition, the compiled images show variety in the plants’ patterns of
horizontal motion and overall height. In plant science, variance in experiments is an expected
phenomenon and is dealt with by conducting large quantities of repetitions. In our work, we in-
stead take an engineering approach and deal with plant variance by testing whether our method
succeeds in controlling a plant despite certain unpredictability in behavior.

2.2.2 Tip Detection. The images described previously provide timestamped raw data docu-
menting plant responses to the predetermined open-loop controllers. The images are sampled12 at
1/8 resolution and further processed by using the following method for detecting the plant tips.
The tip detection method works based on two sets of photographs. The first set contains the back-
ground photographs showing the setup without a plant. The second set contains the photographs
from the preliminary experiments.

For the background photographs, many examples of each controller state are included in the
set, as there can be slight variations in lighting conditions cast on the background. The green RGB
channel value at each pixel position (i, j) is isolated and remapped onto the domain (0.0, 1.0),
resulting in a matrix Sk = {si, j,k } for all images k . To represent the range of green values possi-
ble at every pixel in the background, matrices A = {ai, j } and B = {bi, j } are constructed with the
same shape as Sn matrices. Every entry of A and B are the minimum and maximum values of the
corresponding entries in all the S matrices:

∀ai, j ,bi, j : ai, j = min
k

(si, j,k), bi, j = max
k

(si, j,k). (1)

After constructing these matrices representing the background setup, the photographs from
the preliminary experiments containing plants are processed. The green channel value is again
isolated for each pixel (i, j) and remapped to the domain (0.0, 1.0), then is saved into the ma-
trices Gk = {дi, j,k } for every image k of the preliminary experiment. The Gk matrices are then
compared against the range matrices A and B from the background setup in order to detect pixels
containing plant material. A pixel (i, j) inside a certain cropped window is identified as containing

11Find a video at https://youtu.be/r4PknIwgTyo.
12The tip detection was implemented in two separate programming platforms. First, we implemented the method in Iron-

Python and native libraries of the VPL Grasshopper pertaining to image sampling for processing the data in simulation.

Then, we implemented the method in standard Python, utilizing the OpenCV library. This was then used for the reality

gap experiments detailed in Section 3.2.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

https://youtu.be/r4PknIwgTyo

Evolved Control of Natural Plants 15:7

Fig. 3. Plant tip trajectories from preliminary experiments (only includes real data; does not include mir-
rored). Figures originally published in prior work [24].

plant material if its value is external to the corresponding range, with respect to threshold θ = 0.2:

Pk = {(i, j) | ∀i, j : дi, j,k < (ai, j − θ) ∨ дi, j,k > (bi, j + θ)}. (2)

Each identified plant pixel is extracted to set P , and their xp = (xp ,yp) coordinate positions are
used to identify two possible locations of the plant’s tip. In order to locate the tip xt , plant pixels are
compared to the globally defined anchor xa = (xa ,ya), representing the position where the plant
stem emerges from the soil. We identify two possible tip positions (corner point xc = (xc ,yc) and
high point xh = (xh ,yh)):

xc = arg max
xp ∈P

|xa − xp | + |ya − yp |, (3)

xh = arg max
xp ∈P

|ya − yp |. (4)

From the two points xc and xh , the one closer in Euclidean distance to the previously detected tip
xt−1 is selected as the current tip xt :

xt =

{
xh , if ‖xt−1 − xh ‖ < ‖xt−1 − xc ‖
xc , else

. (5)

The plant tip positions xt are not based on physical measurement units but on pixels. We make
use of this position data in our purpose-specific model, described next.

The trajectories of tip positions are shown in Figure 3(a), with the six experiments indicated by
color. Figure 3(b) shows the 2D vector direction of tip motion at each time step in the experiments,
categorized according to active light source (right light as blue vectors and left light as green
vectors).

2.2.3 Tip-Motion Model. We use the data from our preliminary experiments and image pro-
cessing to create a simple tip-motion model. The model used in this work is an extension of our
prior work [24]. In the previous approach, we defined the system configuration at time step t

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

15:8 D. N. Hofstadler et al.

as (x,L,C)t , where xt is the plant’s tip position, Lt is the plant’s length, and Ct is the lighting
condition (Boolean value indicating whether the right light is on). The model simply predicted the
next plant’s tip position x̂t+1 given the current system configuration (x,L,C)t . This was achieved
by windowing into the recorded data during runtime of the simulations and, from this window,
calculating average position changes that are corrected for consistent plant lengths using standard
trigonometry [24].

In this work, in order to greatly improve the speed of the plant trajectory simulations, our
extension relies on an array of precomputed model statistics for each pixel location where a tip
could be detected. During runtime, the position of the detected tip is used to index into this array,
retrieving the values needed for simulation. Because the model statistics are precalculated and
therefore do not require short computing times, we use more sophisticated methods of aggregating
the data. This allows the plant length parameter Lt to be removed from the model, simplifying the
full description of the system configuration to (x,C)t .

In summary, we first aggregate the tip detection data into a four-column 2D array storing nor-
malized and mirrored x , y, Δx , and Δy values from all six preliminary experiments. We then win-
dow into this new data to calculate the averages and standard deviations of the Δx and Δy values
contained in the area around each pixel. We finally create two 3D arrays (one for the left light
source, one for the right light source) that both have the same xy measurements of the experiment
images (where the rows and columns correspond to those of an image), and have four layers in the
third dimension, containing the mean Δx , mean Δy, standard deviation of Δx , and standard devi-
ation of Δy. These two arrays make up the tip-motion model and are used to compute the next tip
position during simulation of growth and motion dynamics. A schematic overview of the process
is shown in Figure 4. Following is a more detailed description of the procedures.

Aggregating the Tip Data. Each tip position change from xt to xt+1 occurs under the influ-
ence of Boolean light condition Ct+1. For each active light source, we first construct sets L (left
light) and R (right light) containing tip positions xt = (xt ,yt):

L = {xt | Ct+1 = 0}, R = {xt | Ct+1 = 1}. (6)

We assume our setup to be symmetric and the plant to lack directional bias; therefore, we
mirror the data by transforming all Δxt values associated with the left light source (Ct+1 = 0)
such that they provide additional data for the right light source. We calculate the tip position
changes for all time steps t (except the final time step for each experiment) and time-normalize it
by Δxt = (xt+1 − xt)/Δut , where Δut = ut+1 − ut is the duration in minutes between every time
step t . These vectors, along with positional data, are mirrored according to the width w of the
processed image, and the data recorded in both light conditions is pooled together. In this way,
all tip-motion data is aggregated into a single dataset cast relative to the right light source. It is
later reinterpreted to apply to both light sources during the step of building the tip-motion model.
Finally, the time-normalized and light-mirrored xi ,yi ,Δxi ,Δyi data for all experiments is pooled
into a four-column 2D array DR , where

DR = {(xi ,yi ,Δxi ,Δyi) |(xi ,yi) ∈ R} ∪ {(w − xi ,yi ,−Δxi ,Δyi) |(w − xi ,yi) ∈ L}. (7)

Building the Tip-Motion Model. Our purpose-specific tip-motion model consists of two parts, each
part for one of the two light conditions (left light source or right light source). The two parts are
each structured as a 3D array, matching the x-axis and y-axis pixel count of the sampled images
in two dimensions, and layering four sets of values in the third dimension. The first array of the
model, for the right light source, is calculated from the (xi ,yi ,Δxi ,Δyi) ∈ DR described earlier.
The second array is later calculated from the first. We utilize inverse distance weighting (IDW)
[19] in calculating the first array to interpolate and smooth the data. The four values calculated

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

Evolved Control of Natural Plants 15:9

Fig. 4. Schematic for building MR , one of the two arrays composing our tip-motion model. In the top part
of the schematic, once vector data is extracted through sampling, the dataset is doubled by mirroring
around the central axis, with the data of the right and left light sources separated. In the bottom part of the
schematic, the model array MR for the right light source is built. The data for the right light is interpolated
and smoothed through inverse distance-weighted averaging, saving the mean and standard deviation of
each location for both the x and y directions.

are the IDW averages of x-axis andy-axis tip-motion vectors, along with their respective standard
deviations.

In contrast to the method in prior work [24], which windows into the aggregated tip-motion
data using small rectangles (37.5 pixels × 75 pixels in width and height), here we window into the
data using large circles of radius r = 200 pixels. Also, while the prior work [24] models tip motion
differently along the x-axis and y-axis, here we model them jointly, taking the IDW average and
standard deviation of the windowed data for both axes.

To calculate the model for the right light source, we first window into the aggregated dataDR and
construct arrayWxp

, which has dimensions matching the sampled images. For each position xp =

(xp ,yp), the data points of DR where xi = (xi ,yi) falls into window radius r = 200 are collected as

Wxp
= {(xi ,yi ,Δxi ,Δyi) ∈ DR | ‖xi − xp ‖ ≤ r }. (8)

This data is used to compute the IDW averages and standard deviations of Δxi and Δyi at each xp .
A weight wi is assigned, based on a simple IDW function with exponent two, to every data point

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

15:10 D. N. Hofstadler et al.

xi = (xi ,yi) where (xi ,yi ,Δxi ,Δyi) ∈Wxp
, such that

wi =

{
1/‖xp − xi ‖2 if ‖xp − xi ‖ ≥ 12
1/122 else

. (9)

If the distance is under 12 pixels in this operation, we fix it at 12 to avoid overweighting and division
by zero, as our tip detection occurs at 1/8 resolution. The IDW averages for each position xp =

(xp ,yp) are computed according to (xi ,yi ,Δxi ,Δyi) ∈Wxp
as

μ (Δxp) =
1

|Wxp
| ×

|Wxp |∑
i=1

wi × Δxi , (10)

μ (Δyp) =
1

|Wxp
|

|Wxp |∑
i=1

wi × Δyi , (11)

and the IDW standard deviations are computed as

σ 2 (Δxp) =
1

|Wxp
| ×

|Wxp |∑
i=1

(wi × (Δxi − μ (Δxp))2), (12)

σ 2 (Δyp) =
1

|Wxp
| ×

|Wxp |∑
i=1

(wi × (Δyi − μ (Δyp))2), (13)

unless |xi ∈ xp | < 30 (i.e., there are fewer than 30 data points in the circular window around xp). In
such cases, we discard the entries and cast that xp position as empty, because there is not enough
tip-motion data to calculate the model values.

A new 3D arrayMR is constructed with two dimensions matching the sampled images, and with
the values μ (Δxp), μ (Δyp), σ (Δxp), and σ (Δyp) for each xp assigned to four layers in the third
dimension. This array MR contains all the information of the model but is cast under the right
light source, as described earlier. To calculate the second array ML of the model, we mirror MR by
flipping the four layers over the x-axis and by multiplying the μ (Δxp) values by −1. This yields
the final tip-motion model arrays, ML and MR .

The values contained in the tip-motion model array MR (i.e., for the right light source) can be
seen in Figure 5. Figures 5(a) and 5(c) represent the mean tip-motion vectors μ (Δx) and μ (Δy);
Figures 5(b) and 5(d) show the standard deviations σ (Δx) and σ (Δy). The standard deviation
values are usually larger than their respective means, showing the large variance in the dataset. In
Figure 5(c), there is a general trend of growth upward (negative values on the color scale indicate
upward motion, as y = 0 is the uppermost pixel) that is especially pronounced on the far side from
the light source. Toward the top-right corner of the data is a concentration of motion downward.
Both of these features in the data reveal the plant stem bending toward the light source. Figure 5(a)
indicates that, when the tip is farther from the light source, it typically moves more quickly toward
it. The features visible in these color maps of MR would be mirrored horizontally in color maps
of ML . These tip-motion model arrays, ML and MR , allow for significantly improved and sped-up
plant simulations, as compared to prior work [24].

2.2.4 Simulation of Tip Behavior. We begin simulations of plant tip trajectories at a manually
fixed origin (x0,y0). The origin x0 is placed at the horizontal center of the image (x0 = 1, 296 pix-
els), and y0 is placed at the lowest point in the photographs that occurs higher than the edge
of the pot in all experiments (y0 = 1, 250 pixels, where y = 0 occurs at the uppermost row of

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

Evolved Control of Natural Plants 15:11

Fig. 5. The four layers of the tip-motion model array MR , describing tip motion when the right light source
is triggered. The color maps indicate the distribution of the IDW means μ and standard deviations σ of the
Δx and Δy values at each xy position. The data is mirrored, time-normalized, smoothed, interpolated, and
extrapolated according to the method described in Section 2.2.3. White patches indicate absence of data.
Axes are given in image pixel coordinates; 37.5 pixels correspond to 1cm in the camera focal plane occurring
at the plant. (a) and (b) show the statistical description of the tip motion on the x-axis, while (c) and (d)
describe motion on the y-axis. Because the y-axis origin is placed at the top of the image (above the plant),
negative values in color map (c) indicate the plant tip’s upward motion. In (a), positive values indicate motion
toward the right.

the image, above the plant). We use this (x0,y0) origin as our first simulated plant tip posi-
tion xt = (xt ,yt) in each simulation run. At each time step of the simulation, we index into the ap-
propriate arrayML orMR depending on the light condition output by the controller (see Section 2.3
for controller details), and according to the current simulated tip position xt retrieve the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

15:12 D. N. Hofstadler et al.

stored μ (Δxi), μ (Δyi), σ (Δxi), and σ (Δyi). We compute the next tip position xt+1 by drawing
from random distributions according to the retrieved values, such that

xt+1 = xt +N (μ (Δxi),σ (Δxi)), (14)

yt+1 = yt +N (μ (Δyi),σ (Δyi)). (15)

2.3 Controller Setup

Our controller is an ANN with four inputs. The inputs are the xy coordinates of the current plant
tip position and the current target position at each time step. These time steps correspond with
5-minute discrete intervals in reality. The network has only one output, which is a binary decision
indicating whether the left or right light source will be triggered in the next time step. When
the controller runs in reality gap experiments, an image of the plant is captured and processed at
each time step, acquiring the current position of the real plant tip. When the controller runs in
simulation, the tip-motion model is used to project the current tip position from the previous.

2.3.1 Definition of the Task. In our previous work [24], the controller performed the task of
steering the plant tip serially toward three specific, unchanging targets in xy space. Here, we
extend the work by generalizing the controller, such that the next arbitrary xy target is provided
as an input. This enhancement allows the controller to direct a wide range of growth patterns
for various applications (e.g., plant shaping, braiding; see Section 5). A new target input to the
controller is triggered once the current target x

∗
i is reached by the plant tip xt , such that

|xt − x∗i | ≤ 12 ∨ |yt − y∗i | ≤ 12 ∨ |y∗i − yt | ≥ 40. (16)

If the tip’s horizontal or vertical distance to the target is smaller than 12 pixels, we count the
target as reached. Otherwise, when the tip is 40 pixels above the target (to account for the possible
downward bending of the plant stem), we switch to the next target anyway. Using this approach of
analyzing target proximity separately along the two axes eliminates the speed problem posed by
calculation of Euclidean distance, at a time-critical step. When triggered, a new target is generated
according to the method described next.

2.3.2 Target Generation. The task of the evolved controllers is to steer the plant tip to arbitrary
targets that can change at runtime. Targets would be user defined in an application; hence, for
benchmarking we automatically generate a varying number of arbitrary targets for every indi-
vidual controller and evaluate its behavior according to those target sets. Besides the objective of
targets being reachable by the plant in principle, we have two competing priorities in our genera-
tion method. On the one hand, because we evaluate each controller with multiple simulation runs
(each with varying numbers of targets), the target sets should have comparable statistical proper-
ties, such that the evaluation of controller performance is not biased by differences in targets. On
the other hand, the generated targets should be diverse enough to ensure that the evolved con-
trollers will be general. We approach these objectives by using a method similar to our simulation
of tip motion, but instead of drawing random values from a normal distribution parameterized
from the tip-motion model array, we select values corresponding to a given cumulative probability
at each pixel. As such, we employ a data-driven probabilistic target generation method, described
later. A new target is generated once a previous target is reached. The position of the new target is
defined based on a given probability for reachability of the point and the desired relative distance
along the trajectory from the tip position to the edge of the data in the array.

The function for target generation (see Algorithm 1) receives the position of the plant tip at
the time of target generation (tipx , tipy), as well as the tip-motion model arrays ML for the left
light source and MR for the right light source. The function also uses a set of parameters that

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

Evolved Control of Natural Plants 15:13

can be changed by the user according to the desired level of reachability of the targets, preach;
the level of desire for switching direction when moving from one target to the next, pswitch; the
relative distance dtraverse along the projected trajectory where we fix the target; the maximum y
positionymax of any target in the system; and lastly, the direction rlast in which the prior target was
generated. In the implementation used here, we draw uniform random values for preach from the
half-open interval [0.58, 0.72) and for ptraverse from [0.5, 0.7) every time a new target is generated.
The value of pswitch is fixed at 0.75.

In order to generate a trajectory in a certain direction, we use the μ (Δyi) and σ (Δyi) from
the tip-motion model array of the respective light source C (left light, C = 0; right light, C = 1).
Based on that, we calculate a trajectory of positions that are reachable with the desired probability
preach. The set of positions are traversed in order to choose a target with the desired distance from
the previous one based on dtraverse. Starting from the last target, we iteratively generate a set of
potential target positions xp where each point is adjacent to the previous one, such that

xp+1 =

{
xp − 1, if C = 0
xp + 1, else

, (17)

yp+1 = yp + μ (Δyi) − z × σ (Δyi), (18)

where z is the multiplier for the standard deviation σ (Δyi) associated to position (xp ,yp). The

probit13 function Φ−1 is used to convert the desired cumulative probability preach into the corre-
sponding value z = Φ−1 (preach) from a standard normally distributed variable, which we can then
use to get the according value for any normal distribution (by multiplying with its σ).

The resulting list of pixel coordinates is defined as the trajectory from which a target will be
selected (cast as border trajectory b in Algorithm 2). The target is chosen by traversing this series
of pixels to reach the distance dtraverse, which gives the relative distance from the previous target
(see Algorithms 1 and 2 for further details).

2.3.3 Evolutionary Approach. We evolve ANN controllers using the portable Python library
MultiNEAT [5], which is based on NeuroEvolution of Augmenting Topologies (NEAT) [20]. NEAT
is an efficient evolutionary algorithm that begins with a random population of ANNs with minimal
structure (i.e., no hidden layers), then applies complexifying methods to modify the weights and
the network structure. We use here the set of NEAT parameters in Table 1, based on the parameters
that have shown successful performance in our previous work [24].

At each time step t , the xy coordinates of the current plant tip position xt = (xt ,yt) and current
target position x

∗
i = (x∗i ,y

∗
i) are input to the ANN. The ANN then outputs the binary light source

state Ct , determining whether the left light source (Ct = 0) or the right light source (Ct = 1) is
activated. The current system configuration (x,C)t influences the plant’s behavior (growth and
motion) during that time step. Therefore, in the case of simulation, the tip-motion model is used
to project the next tip position xt+1 from the current system configuration. In reality gap experi-
ments, an image of the plant is captured after the time step is complete, and the processing method
described in Section 2.2.2 is used to detect the plant’s new tip position. This process is repeated
at every time step until the tip’s yt value is equivalent to roughly 20cm in height. This allows
the plant enough growth space to reach between two and six arbitrary targets generated by the
method described previously. It also allows the reality gap experiments to be performed in a rel-
atively short period of time (approximately 72 hours each), such that the overhead is manageable

13The Scipy Python library is used to apply the probit function (the quantile function associated with the standard normal

distribution. It is the inverse of the cumulative distribution function (CDF)).

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

15:14 D. N. Hofstadler et al.

ALGORITHM 1: Target Generation

Data: tip position (tipx , tipy), tip-motion model arrays ML , MR , given probability for reaching the target

preach, given probability to switch direction of target generation (left or right of tip) pswitch, the given

desired relative distance dtraverse between the old and new target positions, the Boolean rlast that is

true when the previous target was generated toward the right, the maximum height for target ymax

Result: target position (tarдx , tarдy), Boolean cr (true if the new target was generated toward the right)

r ← uniform random number in [0, 1);

b ← empty list of border pixel coordinates;

if r < pswitch; /* i.e., we switch direction */

then

if not rlast; /* i.e., last target was generated towards the left */

then

cr ← True ;

MC ← MR ; /* pick the array for right light */

else

cr ← False ;

MC ← ML ;

end

else

if rlast then

cr ← True ;

MC ← MR ;

else

cr ← False ;

MC ← ML ;

end

end

b ← дetTrajectory (tipx , tipy ,MC ,preach); /* call function getTrajectory() */

blen ← length of b; /* number of tuples (bx ,by) in list */

if blen > 0; /* i.e., plant tip was at valid entry of model array */

then

bindex ← f loor (blen · dtraverse); /* index of target tuple according to dtraverse */

(tarдx , tarдy) ← b[bindex] ;

if tarдy < ymax; /* if target is higher than allowed */

then

(tarдx , tarдy) ← the first tuple from b that is lower than ymax;

end

else

generate a random target in the central data area (with tarдy lying above the tipy and below ymax);

end

return tuple (tarдx , tarдy) and Boolean cr

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

Evolved Control of Natural Plants 15:15

Table 1. Used NEAT Parameters

Parameter Value Parameter Value

PopulationSize 50 CrossoverRate 0.5
DynamicCompatibility True MutateWeightsProb 0.9
YoungAgeTreshold 15 YoungAgeFitnessBoost 1.0
OverallMutationRate 0.5 WeightReplacementMax 5.0
MinSpecies 5 WeightMutationRate 0.75
MaxSpecies 25 Elitism 0.1
SurvivalRate 0.6 MutateAddNeuronProb 0.04

ALGORITHM 2: Function getTrajectory()

Data: tip position (tipx , tipy); μ (Δyi) and σ (Δyi) from the tip-motion model array MC for light condition C
(Boolean value, equal to 1 for right light);the probability for reaching a target preach

Result: list of tuples (bx ,by) border trajectory b

z ← Φ−1 (preach); /* probit function */

b ← empty list of border pixel coordinates;

if C is True; /* i.e., right light is lit */

then

m ← 1; /* next target right */

else

m ← −1; /* next target left */

end

xp ← tipx ;

yp ← tipy ;

while not (μ (Δyi) == ‘NaN’); /* i.e., we have data for that location */

do

append the tuple (xp ,yp) to the list b;

xp ← xp +m;

yp ← yp + μ (Δyi) − z · σ (Δyi); /* using the quantile on σ */

[μ (Δyi),σ (Δyi)]← aisle of Mc at rowm = round (yp) and column n = round (xp);

end

return the list of tuples b constituting all points approximately reachable with probability preach under the

given light condition C

for an engineering task. In order to evolve ANN controllers to steer the plant tip to generalized
targets, we define two alternative fitness functions, F1 (a behavioral fitness function) and F2 (an
aggregate fitness function), according to the classification in [18].

First, we define the behavioral fitness function F1. Since the motion control acts mainly along
the x-axis while the change along the y-axis is mostly due to growth, we measure the distances
traversed toward every new target from the previous target along the x-axis. For that, for every
target i ∈ {1, 2, . . . ,n} we define the instant rewards r (t), based on the number N of total targets

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

15:16 D. N. Hofstadler et al.

and the distance Δxt traversed in every time step t :

Δxt = xt − xt−1, t ∈
{
t | y∗i−1 ≤ yt < y∗i

}
, (19)

r (t) =
⎧⎪⎪⎨⎪⎪⎩

Δxt , if xt < x∗i
−Δxt , if xt > x∗i
|Δxt |, if xt = x∗i

, (20)

where (xt ,yt) is the position of the tip at time step t and (x∗i ,y
∗
i) is the position of the target i .

(x∗0 ,y
∗
0) is the starting position of the tip. The sum of the rewards for each target is defined as

Ri =
∑

r

(t), t ∈
{
t | y∗i−1 ≤ yt < y∗i

}
. (21)

The controller is rewarded Ri when the tip transitions between the old and the new targets. If the
tip starts out of this region, we make a correction in the value of Ri by decreasing it by x∗i − xt ,
where xt is the starting point of the tip for the corresponding target. The reason for this correction
is to prevent solutions where the tip compensates for missing a target by getting an extra reward
for the next target, through starting its motion toward the new target at a farther distance. The
behavioral fitness F1 is then computed as follows:

F1 =

∑N
i=1 Ri∑N

i=1 R
max
i

, (22)

where Rmax
i = |x∗i − x∗i−1 | is the maximal reward that a controller can theoretically achieve for

every target i , and N is the number of targets. During every epoch of the artificial evolution,
we evaluate each controller in 15 independent plant growth simulations (with distinct generated
targets) and select the minimum fitness as the controller’s final fitness.
F1 is a behavioral fitness function; namely, it has prior knowledge about possible useful behavior

leading to a potential solution. It uses this knowledge to continuously reward/punish the controller
according to its behavior.

To define the second fitness function F2, we use the Euclidean distance between the current
plant tip position (xt ,yt) and the considered target i , where

disti (t) =
√

(x∗i − xt)2 + (y∗i − yt)2. (23)

A controller receives a reward of R = 1 if it reaches the vicinity r of the target, at any time step
t ∈ T when the plant tip is positioned between the heights of the current and former target, such
that

Ti =
{
t | y∗i−1 ≤ yt < y∗i

}
, (24)

Ri =

{
1, if ∃t ∈ Ti , disti (t) ≤ r
0, else

. (25)

F2 is then defined according to the reward values, as

F2 =
1

N

N∑
i=1

Ri . (26)

Similarly to F1, for the controllers evolved using F2, we evaluate each controller according to
15 independent target sets and plant growth simulations. However, F2 is an aggregate fitness func-
tion, meaning that the final step of task completion is the only metric for evaluation, regardless of
the preceding steps leading up to its solution. Because of the stochasticity in our simulated growth

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

Evolved Control of Natural Plants 15:17

Fig. 6. Evolution of controllers selected by fitness function F1. Shown here are 50 independent runs.
(a) Boxplots give the first quartile, the median, and the third quartile, while the whiskers are 1.5 times the
interquartile distance added to the box. Outliers are shown separately. (b) Because the generation fitnesses
of a single run are independent of each other, we can use functional boxplots. The figure shows the “median
function” in black, while the “quartile” and “whisker functions” are the dark and light gray color areas, re-
spectively. The “whisker functions” are 3 times the interquartile distance added. A function is considered an
outlier and drawn separately if it is outside the range at any single generation.

and motion, analytically good controllers can still slightly miss targets, thus ending up with a fit-
ness of zero according to the aggregate fitness function. Using a minimum of 15 repetitive runs
greatly increases this probability. By instead taking the average, we can ensure steadier evolution
of the controllers.

As F2 only rewards the controller when the tip reaches a target (see Equation (25)), F2 is less
complex than the behavioral F1. However, the lack of guidance in F2 could lead to bootstrapping
problems, slowing down the evolutionary process [8]. We do not encounter this potential slowness,
by virtue of the array approach to modeling and simulating growth (see Section 2.2.3), which
greatly speeds up our evolutionary process. This allows us to investigate the aggregate fitness
function approach seen in F2.

3 RESULTS

First, we report the results of evolving controllers using the tip-motion model (see Section 2.2.3)
in simulation. We test our previously mentioned two fitness functions (F1 and F2) in two sets of
50 evolutionary runs, 500 generations each. Second, we report the performance of the evolved
controllers in plant experiments (i.e., discuss the existence of reality gap).

3.1 Evolution of Controllers in Simulation

Compared to [24], the optimized procedure allowed, but also required, the stricter evaluation
scheme of testing each individual controller on 15 simulation runs. The current model includes
substantially more (and locally inhomogeneous) stochasticity, better reflecting the plants’ behav-
ior. First, we show the results for the behavioral fitness function F1. Figure 6 shows boxplots and
functional boxplots of 50 independent runs that each contain 500 generations. We can clearly see
that, unlike in the previous work [24], we can much better guarantee that the NEAT process finds
a solution to this more complex problem. By generation 200, we have reached convergence, while
the majority of populations evolved a solution within the first 50 generations. Counterintuitively,
feeding the ANN the current target as an additional input parameter makes this task much easier,
as the network can learn the correlation between the input and output parameters. Figure 7(a)

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

15:18 D. N. Hofstadler et al.

Fig. 7. Trajectories of the simulated plant tip for two successful controllers using F1.

Fig. 8. Performance of the evolutionary process over generations for 50 evolutionary runs.

shows the worst performance of 15 plant simulations of the controller we selected to guide the
plants across the reality gap (see Section 3.2). We chose it because it had the highest fitness of all
controllers, even though we are aware that there is a lot of stochasticity involved. The strategy is
straightforward: trigger the light source that leaves the target in between the light source and the
plant tip. This leads to the plant being guided below the target as fast as possible, and then kept
there (by alternating the lights) until it grows to reach the target. This behavior is particularly
pronounced in Figure 7(b), where the tip sometimes moved down, giving a thicket of trajectory
very similar to one of our reality-gap experiments14 (see Section 3.2 for more details explaining
this behavior).

Second, we show the results for the aggregate fitness function F2. The results from 50 inde-
pendent runs are shown in Figure 8. Following the median in Figure 8(a), the fitness increases
steadily and saturation is achieved after 225 generations. Notice that the median shows stepwise
increase/decrease behavior, which reflects the properties of an aggregate fitness function (explicit
reward when a target is achieved).

In Figure 9(a), five targets were generated and the controller could score 85.7% success. Here,
the controller could steer the plant tip toward four targets successfully, but fails to approach the

14Find a video of dynamic targets experiment #1 at https://vimeo.com/205469308.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

https://vimeo.com/205469308

Evolved Control of Natural Plants 15:19

Fig. 9. Trajectories of the simulated plant tip for two successful controllers using F2.

last target due to stochasticity in simulated plant behavior. In Figure 9(b), another four targets
were generated and the controller successfully guided the simulated tip toward all of them, giving
a score of 100%.

To further assess our results, we compare the performance of controllers evolved for each fit-
ness function with the performance of an equivalent quantity of randomly generated controllers.
We generate more than 1,250,000 (50 runs × 500 generations × population size 50, yielding the
same number of evaluations as in the evolutions) random neural networks per fitness function
and evaluate them in the same way as their evolved counterparts. For each individual controller,
which undergoes 15 independent simulation runs, we look at the minimal fitness for the behavioral
F1 and at the average fitness for the aggregate F2. When evaluating with F1, fitness can range from
large negative values corresponding with the distance of growth away from the targets to a fitness
of 100% when perfectly reaching all targets. For random controllers evaluated by F1, we observe
a mean fitness of −229% with a standard deviation of 122%, with the best controller achieving a
fitness of 54% (compared to 92% fitness achieved through evolution). Out of 1,327,605 random con-
trollers, only five of the controllers (i.e., 3.8 × 10−6%) achieved a fitness over 50%. When evaluating
with F2, the combined fitness values are discrete and dependent on the number of targets, and
the overall fitness is mapped to the interval of 0% to 100%. For random controllers evaluated with
F2, the mean fitness is at 20% with a standard deviation of 8%, with the best controller achieving
a fitness of 67% (compared to 100% fitness achieved through evolution). Out of 1,379,379 random
controllers, only three of them (i.e., 2.2 × 10−6%) achieved a fitness better than 50%. Thus, in both
cases, the evolutionary process substantially outperforms the blind controllers.

3.2 Performance of Controllers in Plant Experiments

In a final set of plant experiments, one of our controllers (see Figure 7(a)) that was successfully
evolved in simulation is tested in reality with actual bean plants. It is one of the controllers evolved
based on the behavioral fitness function F1. This is a typical attempt to investigate the reality gap
problem [15]. In our previous work [24], we confirmed the possibility to bridge the reality gap for
a task with three predefined target points (x∗1 = (3, 6), x

∗
2 = (−5, 9), and x

∗
3 = (−1, 13.5)). Here, we

test the performance of our evolved controller first in a similar scenario (fixed-target experiments).
Second, we extend our reality gap investigation by including plant experiments with dynamically
generated targets (dynamic-target experiments), as described in Section 2.3.2. One of these plant

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

15:20 D. N. Hofstadler et al.

Fig. 10. Trajectories of the detected plant tips in fixed-target experiments.

Fig. 11. Trajectories of the detected plant tips in dynamic-target experiments.

growth experiments takes up to 72 hours; therefore, we parallelized our experiments and tested
the controller concurrently in two separate bio-hybrid experiment setups.

On the one hand, the fixed-target experiment was repeated three times, scoring a fitness of
95.17% on average. Hence, we observe an average 28.7% increase in performance in comparison to
our previous work. In Figure 10, we show the trajectories of the guided plant tip from our previous
work (Figure 10(a)) side by side with the trajectories from our current work, which scored a fitness
of 95.17% (Figure 10(b)). On the other hand, the dynamic-target experiment was repeated two times,
scoring a fitness of 91.25% on average. In Figures 11(a) and 11(b), we show the trajectories of the
guided plant tip from the two dynamic-target experiments scoring fitness values of 92.6% and
89.9%, respectively. In comparison to the experiments in simulation, we notice similar behaviors
of the actual plant steered by the controller. The controller makes the tip of the plant approach
every target precisely from below (xt = x∗i). Then it maintains the horizontal coordinate xt during
the plant’s growth by alternating between the two light sources until the target is reached. This

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

Evolved Control of Natural Plants 15:21

generates a series of back-and-forth movements (e.g., in Figure 11(b) between the second and third
target15). When the target is finally approached and switched, the controller rotates the plant
appropriately to the opposite side (where required) beneath the next target.

Both the superficial observation of the plant behavior (i.e., the effects of the control) and the
measured fitness in the plant experiments indicate that the controllers transferred successfully
from simulations to reality without being changed. Hence, we have successfully bridged the reality
gap in this specific setup. This is a very encouraging result because it demonstrates possible future
pathways for this research. While the plant experiments are slow and expensive, our modeling
approach allows us to quickly evolve controllers with high transferability. Whether this feature
scales up to scenarios of higher complexity needs to be shown.

4 DISCUSSION

This is a pioneering study into a new domain of using robots to control natural plants. Naturally,
we started our endeavor of developing a novel methodology with a task that is arguably not overly
complex. There are not many degrees of freedom in the actuator control values as the controller is
limited to switch between the left and right light. Still, the task contains all important challenges
that we will also face in later, more complex studies. These challenges are correct timing, the
plant’s reactive motion behavior, the plant’s medium-term growth, and the user-defined target
points that introduce considerable issues in steering the plant. For example, the stiffening process
of the plant’s stem requires sometimes steering the plant tip in trajectories that overshoot the
intuitive intermediate waypoints. Only the overshoot ensures later that the plant finally reaches
the desired target point.

The contribution of the proposed data-driven plant model is a relevant byproduct of this work.
Although there is of course a large body of literature on plant models, the large majority of these
cannot be applied in this work. Most research in plant science is focused on specific details, for
example, in the physiology and biochemistry of the plant. What was required here, however, was
a rather holistic model of plant behavior. Developing a generic holistic model of plant growth and
motion may prove to be extremely challenging or even infeasible, while a domain-specific model
may be not only feasible but also even simple. Our work shows that a data-driven model can be
defined for a specific domain and task. Maybe this result can encourage developing more of such
models that would be required for engineering approaches, as in the combination of plants and
robots.

The successful crossing of the reality gap as reported here is a significant result. This success
may seem surprising given the degree of complexity in the involved plant behavior compared to
regular scenarios in evolutionary robotics, such as maze exploration or legged locomotion.

With the data at hand, we can only speculate about the causes. On the one hand, the relatively
low degree of freedom in the control values (switching two lights) may limit the possibilities of
how a controller that performed high in the simulation can behave in unfortunate ways in the real
experiment. On the other hand, the easy crossing of the reality gap may also hint at the potentially
high quality of our data-driven plant model. The development of the model came with a consider-
able cost in the form of preliminary plant experiments and a certain amount of theoretical work.
Hence, the easy crossing was a result of an upfront investment and is probably not a good role
model for similar efforts in evolutionary robotics in general. Also, within this work, it is unclear
how our modeling approach would scale up to more complex experimental setups and tasks. Each
additional dimension (e.g., spatial dimension, third light, second plant, plant branching) would

15Find a video of fixed-target and dynamic-target experiments at https://vimeo.com/205469308.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

https://vimeo.com/205469308

15:22 D. N. Hofstadler et al.

increase the complexity of the model and lead to a combinatorial explosion if the method is not
improved qualitatively.

The task of controlling a single plant’s growth and motion with two lights should be seen as a
microscopic problem instance of what we develop and investigate in the project flora robotica. The
vision is to use a distributed robot system to control plant growth on architectural scales. In ongo-
ing work (unpublished), we experiment with eight robots in a 2D setup to control plant growth on
a bigger scale including robot-robot interactions but limited to regularly programmed controllers
(not evolved). Tasks of interest include growing a green wall with user-defined properties. For
example, a user can specify to have no growth into a certain area and particularly much biomass
in another area. The distributed robot system then detects the current condition and coverage of
the plants on the wall, steers individual plant tips, and coordinates the growth control among the
robots. These will be tasks that we will investigate with the methodology introduced in this article.

The novel paradigm underlying this work is to use natural plants for engineering tasks. Once
the step to 3D setups is done, steering growth can be used similarly to additive manufacturing
(e.g., 3D printing) with the advantage of almost zero material costs but with the challenge of low
speed. Our vision is to enable plants to grow into desired forms, shapes, and functions supported
and guided by robots. For example, plants could be used to connect building material and a long-
term vision could be to enable them to enter the domain of actual robot tasks, such as grasping or
monitoring.

5 CONCLUSION AND FUTURE WORK

In this article, we presented our approach to a bio-hybrid of robots and natural plants. Here, the
robotic setup consists of a camera as a sensor for the plant’s behavior and two LEDs as actuators
providing stimuli for the plant to be controlled. First, we developed a data-driven model of the
interaction between the robotic setup and the plant’s tip. For that, we carried out a set of initial
experiments with a predetermined open-loop robotic controller that generated a regular pattern
of on-off commands for the LEDs. An image processing method was used to collect information
about the behavior of the plant’s tip in reaction to the LEDs. The model was used to simulate the tip
behavior for evolving controllers that steer a plant’s tip to approach a set of randomly generated
targets. We tested two different types of fitness functions that require different levels of a priori
knowledge in their design, and therefore different speeds of convergence. The evolved controllers
were tested on the setups with natural plants. The successful control of the plant approaching
several different targets demonstrated the successful bridging of the reality gap in this particular
setup.

In the future, we will extend the method by modeling the whole stem and aiming for control over
the shape of the stem. The model can be also extended to 3D dynamics by adding another camera
direction to the setup. With the extended setup, we can define more complex tasks, for example,
reaching target points in 3D space or growing a spiral shape around an obstacle. We will extend
the setup with additional stimuli, for example, to repel the plants. We also plan to simultaneously
control several independent plants in order to steer plant material into a greater variety of patterns
and shapes. We are extending our approach to a decentralized setup where autonomous nodes
containing sensors (e.g., infra-red sensors for proximity) and actuators will self-organize, reacting
to and influencing the plants, reaching a synergistic behavior in the bio-hybrid.

ACKNOWLEDGMENTS

Project ‘flora robotica’ has received funding from the European Union’s Horizon 2020 research and
innovation program under the FET grant agreement, no. 640959.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

Evolved Control of Natural Plants 15:23

REFERENCES

[1] Renaud Bastien, Stéphane Douady, and Bruno Moulia. 2015. A unified model of shoot tropism in plants: Photo-, gravi-

and propio-ception. PLOS Computational Biology 11, 2 (2015), 1–30. DOI:https://doi.org/10.1371/journal.pcbi.1004037

[2] Josh C. Bongard. 2013. Evolutionary robotics. Communications of the ACM 56, 8 (2013), 74–83. DOI:https://doi.org/

10.1145/2493883

[3] Gilles Caprari, Alexandre Colot, Roland Siegwart, José Halloy, and Jean-Louis Deneubourg. 2005. Animal and robot

mixed societies: Building cooperation between microrobots and cockroaches. IEEE Robotics & Automation Magazine

12, 2 (2005), 58–65. DOI:https://doi.org/10.1109/MRA.2005.1458325

[4] Oscar E. Checa and Matthew W. Blair. 2008. Mapping QTL for climbing ability and component traits in common bean

(Phaseolus vulgaris L.). Molecular Breeding 22, 2 (2008), 201–215.

[5] Peter Chervenski and Shane Ryan. 2017. MultiNEAT, project website. Retrieved from http://www.multineat.com/.

[6] John M. Christie and Angus S. Murphy. 2013. Shoot phototropism in higher plants: New light through old concepts.

American Journal of Botany 100, 1 (2013), 35–46. DOI:https://doi.org/10.3732/ajb.1200340 arXiv:http://www.amjbot.

org/content/100/1/35.full.pdf+html

[7] Rodrigo da Silva Guerra, Hitoshi Aonuma, Koh Hosoda, and Minoru Asada. 2010. Behavior change of crickets in a

robot-mixed society. Journal of Robotics and Mechatronics 22, 4 (2010), 526–531.

[8] Mohammad Divband Soorati and Heiko Hamann. 2015. The effect of fitness function design on performance in evo-

lutionary robotics: The influence of a priori knowledge. In Proceedings of the 2015 Annual Conference on Genetic and

Evolutionary Computation. ACM, 153–160.

[9] Roy Featherstone and David Orin. 2000. Robot dynamics: Equations and algorithms. In Proceedings of the IEEE Inter-

national Conference on Robotics and Automation, 2000 (ICRA’00). Vol. 1. 826–834. DOI:https://doi.org/10.1109/ROBOT.

2000.844153

[10] flora robotica. 2017. Project website. http://www.florarobotica.eu.

[11] Paco Calvo Garzón and Fred Keijzer. 2011. Plants: Adaptive behavior, root-brains, and minimal cognition. Adaptive

Behavior 19, 3 (2011), 155–171.

[12] Alexey Gribovskiy, José Halloy, Jean-Louis Deneubourg, Hannes Bleuler, and Francesco Mondada. 2010. Towards

mixed societies of chickens and robots. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS’10). 4722–4728. DOI:https://doi.org/10.1109/IROS.2010.5649542

[13] José Halloy, Gregory Sempo, Gilles Caprari, Colette Rivault, Mahdi Asadpour, Fabien Tâche, Imen Saïd, Virginie

Durier, Stephane Canonge, Jean-Marc Amé, Claire Detrain, Nikolaus Correll, Alcherio Martinoli, Francesco Mondada,

Roland Siegwart, and Jean-Louis Deneubourg. 2007. Social integration of robots into groups of cockroaches to control

self-organized choices. Science 318, 5853 (Nov. 2007), 1155–1158. DOI:https://doi.org/10.1126/science.1144259

[14] Heiko Hamann, Mostafa Wahby, Thomas Schmickl, Payam Zahadat, Daniel Hofstadler, Kasper Stoy, Sebastian Risi,

Andres Faina, Frank Veenstra, Serge Kernbach, Igor Kuksin, Olga Kernbach, Phil Ayres, and Przemyslaw Wojtaszek.

2015. flora robotica – Mixed societies of symbiotic robot-plant bio-hybrids. In Proceedings of IEEE Symposium on

Computational Intelligence (IEEE SSCI’15). IEEE, 1102–1109.

[15] Sylvain Koos, Jean-Baptiste Mouret, and Stéphane Doncieux. 2013. The transferability approach: Crossing the reality

gap in evolutionary robotics. IEEE Transactions on Evolutionary Computation 17, 1 (2013), 122–145.

[16] Aristid Lindenmayer. 1975. Developmental algorithms for multicellular organisms: A survey of L-systems. Journal of

Theoretical Biology 54, 1 (1975), 3–22.

[17] Bernard Millet and Pierre-Marie Badot. 1996. The revolving movement mechanism in Phaseolus: New approaches to

old questions. Vistas on Biorhythmicity (First Edition), (1996), 77–98.

[18] Andrew L. Nelson, Gregory J. Barlow, and Lefteris Doitsidis. 2009. Fitness functions in evolutionary robotics: A survey

and analysis. Robotics and Autonomous Systems 57 (2009), 345–370.

[19] Donald Shepard. 1968. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the

1968 23rd ACM National Conference (ACM’68). ACM, New York,, 517–524. DOI:https://doi.org/10.1145/800186.810616

[20] Kenneth O. Stanley and Risto Miikkulainen. 2004. Competitive coevolution through evolutionary complexification.

Journal of Artificial Intelligence Research 21, 1 (Jan. 2004), 63–100.

[21] Ondrej Stava, Soren Pirk, Julian Kratt, Baoquan Chen, Radomir Mech, Oliver Deussen, and Bedrich Benes. 2014.

Inverse procedural modelling of trees. Computer Graphics Forum 33, 6 (2014), 118–131. DOI:https://doi.org/10.1111/

cgf.12282

[22] Maria Stolarz. 2009. Circumnutation as a visible plant action and reaction: physiological, cellular and molecular basis

for circumnutations. Plant Signaling & Behavior 4, 5 (2009), 380–387.

[23] Sebastian von Mammen and Christian Jacob. 2009. The evolution of swarm grammars – growing trees, crafting art,

and bottom-up design. IEEE Computational Intelligence Magazine 4, 3 (2009), 10–19.

[24] Mostafa Wahby, Daniel N. Hofstadler, Mary Katherine Heinrich, Payam Zahadat, and Heiko Hamann. 2016. An evo-

lutionary robotics approach to the control of plant growth and motion: Modeling plants and crossing the reality gap.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

https://doi.org/10.1371/journal.pcbi.1004037
https://doi.org/10.1145/2493883
https://doi.org/10.1109/MRA.2005.1458325
http://www.multineat.com/
https://doi.org/10.3732/ajb.1200340
http://www.amjbot.org/content/100/1/35.full.pdf+html
https://doi.org/10.1109/ROBOT.2000.844153
http://www.florarobotica.eu
https://doi.org/10.1109/IROS.2010.5649542
https://doi.org/10.1126/science.1144259
https://doi.org/10.1145/800186.810616
https://doi.org/10.1111/cgf.12282

15:24 D. N. Hofstadler et al.

In Proceedings of the 2016 IEEE 10th International Conference on Self-Adaptive and Self-Organizing Systems (SASO’16).

IEEE, 21–30.

[25] Richard A. Watson, Sevan G. Ficici, and Jordan B. Pollack. 2002. Embodied evolution: Distributing an evolutionary

algorithm in a population of robots. Robotics and Autonomous Systems 39, 1 (2002), 1–18.

[26] Payam Zahadat, Michael Bodi, Ziad Salem, Frank Bonnet, Marcelo E. D. Oliveira, Francesco Mondada, Karlo Griparic,

Tomislav Haus, Stjepan Bogdan, Stjepan Mills, Pedro Mariano, Luis Correia, Olga Kernbach, Serge Kernbach, and

Thomas Schmickl. 2014. Social adaptation of robots for modulating self-organization in animal societies. In Proceed-

ings of the 2014 IEEE 8th International Conference on Self-Adaptive and Self-Organizing Systems Workshops (SASOW’14).

55–60. DOI:https://doi.org/10.1109/SASOW.2014.13

[27] Payam Zahadat, Daniel N. Hofstadler, and Thomas Schmickl. 2017. Vascular morphogenesis controller: A generative

model for developing morphology of artificial structures. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO’17). ACM, 163–170.

[28] Aleš Zamuda and Janez Brest. 2014. Vectorized procedural models for animated trees reconstruction using differential

evolution. Information Sciences 278 (2014), 1–21. DOI:https://doi.org/10.1016/j.ins.2014.04.037

Received February 2017; revised June 2017; accepted July 2017

ACM Transactions on Autonomous and Adaptive Systems, Vol. 12, No. 3, Article 15. Publication date: September 2017.

https://doi.org/10.1109/SASOW.2014.13
https://doi.org/10.1016/j.ins.2014.04.037

