
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320036141

A Multiscale Model of Morphological Complexity in Cities -- Characterising

Emergent Homogeneity and Heterogeneity

Conference Paper · September 2017

CITATIONS

0
READS

221

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Flora Robotica: Societies of Symbiotic Robot-Plant Bio-Hybrids as Social Architectural Artifacts View project

Persistent Modelling View project

Mary Katherine Heinrich

Universität zu Lübeck

12 PUBLICATIONS   27 CITATIONS   

SEE PROFILE

Phil Ayres

Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservat…

53 PUBLICATIONS   67 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Mary Katherine Heinrich on 26 September 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/320036141_A_Multiscale_Model_of_Morphological_Complexity_in_Cities_--_Characterising_Emergent_Homogeneity_and_Heterogeneity?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320036141_A_Multiscale_Model_of_Morphological_Complexity_in_Cities_--_Characterising_Emergent_Homogeneity_and_Heterogeneity?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Flora-Robotica-Societies-of-Symbiotic-Robot-Plant-Bio-Hybrids-as-Social-Architectural-Artifacts-2?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Persistent-Modelling?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Katherine_Heinrich?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Katherine_Heinrich?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitaet_zu_Luebeck?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Katherine_Heinrich?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Phil_Ayres?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Phil_Ayres?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Royal_Danish_Academy_of_Fine_Arts_Schools_of_Architecture_Design_and_Conservation?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Phil_Ayres?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Katherine_Heinrich?enrichId=rgreq-cbb46b0a6b56f9c05f66f2ffe8cb03da-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAzNjE0MTtBUzo1NDI4MDA2MzIxOTMwMzBAMTUwNjQyNTE2MzU1Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf


AMultiscale Model of Morphological Complexity in Cities

Characterising Emergent Homogeneity and Heterogeneity
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Approaches from complex systems science can support design decision-making by
extracting important information about key dependencies from large,
unstructured data sources. This paper presents an initial case study applying
such approaches to city structure, by characterising low-level features and
aggregate properties of artifact morphology in urban areas. First, shape analysis
is used to describe microscale artifact clusters, analysed in aggregate to
characterise macroscale homogeneity and heterogeneity. The characterisation is
used to analyse real-world example cities, from both historic maps and
present-day crowdsourced data, testing against two performance evaluation
criteria. Next, the characterisation is used to generate simple artificial
morphologies, suggesting directions for future development. Finally, results and
extensions are discussed, including real-world applications for decision support.

Keywords: Complex systems, morphology, shape analysis, urban planning

INTRODUCTION
In complex systems science, the ‘complexity’ of a sys-
tem can be defined by the length of mathematical
description required to fully encompass the system
without redundancy. If all data in the system is en-
tirely uncorrelated, it is highly complex, but only at
the finest scale. At a larger scale, like that we are
likely to be concerned with when looking at cities,
it can be described very simply because the inde-
pendence of elements implies no larger scale be-
haviours. The variables can be mathematically de-
scribed as random. By contrast, if the system con-
tains patterns anddependencies distributed through
the data, the mathematical description required in-
cludes behaviour at multiple scales. Such ‘complex’

systems are the types of systems that generally exist
in the natural world.

Big data is becoming increasingly common, pro-
viding incredibly detailed mappings of real-world
systems. These massive quantities of data are typi-
cally unstructured, and it is often unclearwhichprop-
erties are important for projecting the impact that
new interventions will have upon the existing sys-
tem. Complex systems science provides frameworks
from which a system’s intricate multiscale cause and
effect relationships can begin to be analysed and un-
derstood, when looking at new unstructured data.

Complex systems approaches have been used in
studying spatial networks of occupant-centric prop-
erties of cities (e.g., land-use, economics, settlement,
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transportation), leading to analytic and generative
models (e.g., Batty 2005; Barthelemy 2011;2016). Ar-
chitecture and planning research in this science of
cities has been pioneered by Batty, who calls the
complex systems understanding of cities a key scien-
tific open challenge (Batty 2008;2013). Complemen-
tarily, shape or morphology of urban artifacts and
spaces is often studied in architecture and planning
(e.g., Beirao et al. 2014), but such analyses are typi-
cally not tied to aggregate properties at larger scales.

The dynamics of cities can be understood as
the interdependence between the short time scales
at which socio-economic characteristics change and
the much longer time scales at which morphological
structure changes. The large time scale historical pro-
cess is one aspect of the fundamental way physical
structures engage with social and economic dynam-
ics. Complex systems approaches to cities typically
model socio-economic forces, and have infrequently
been used to understand, model, or characterise
morphological properties of urban artifacts (see Fig-
ure 1). Here we present an approach to identify the
morphological complexity of artifacts, building on
existing shape analysiswork (see Loncaric 1998; Yang
et al. 2008) to characterise important low-level fea-
tures and their aggregate properties. The characteri-
sation of multiscale attributes of morphology is nec-
essary as a step toward understanding the interplay
of physical build with cities’ socio-economic dynam-
ics. Combining such form-centric quantification with
studiesof occupant-centric dynamics acrossdifferent
urban areas (e.g., data frommobile phones, De Nadai
et al. 2016; social media, França et al. 2015; utility
use, Morales et al. 2017) can provide opportunities
for further advances.

Figure 1
Morphologically
diverse examples of
urban artifact
clusters.

BACKGROUNDAND APPROACH
Our approach to representingurbanmorphology fol-
lows a method from complex systems science that
enables extracting from massive quantities of de-
tailed source data the key high-level characterisa-
tions of the system (Bar-Yam 2016). This multiscale
method focuses on macroscale patterns that arise
from dependencies in the system. In complex sys-
tems science, ‘dependencies’ include all properties
of a system that allow one to infer one observation
of a system from another. This includes the effects
of both direct interactions and common origins. The
latter is manifest, for example, in the replication of
features of a system across multiple parts. The im-
portant aggregate properties of the system include
cases that can be characterised directly as repetitive
structures or behaviours. More elaborate fine scale
details that recur across a system are also relevant.
This framework replaces the infeasible task of using
big data to exhaustively map every detail of a sys-
tem, with the actionable task of characterising the
large-scale information that is required for informed
interventionwith similarly large impact in an existing
real-world system. In this way, morphological inter-
ventions in cities can be informed by projections of
their impacts, not only on surrounding morpholog-
ical structure, but on socio-economic characteristics
that can be representedwith data-drivenmathemat-
ical models.

Existing approaches that utilise a complex sys-
tems understanding of cities to inform newmorpho-
logical interventions focus on proposing new design
solutions or rules of thumb and are termed ‘pattern
language’ approaches (e.g., Alexander 1977). These
rules of thumb seek to recommend specific design
templates for buildings and artifacts, positing that
successful artifacts belong to a “pattern language”
and unsuccessful artifacts are “anti-patterns.” By con-
trast, our approach seeks to develop a unified mul-
tiscale mathematical model that describes any ur-
ban morphological condition, irrespective of design
or value set. In a successful unifiedmodel of this type,
a designer can utilise themathematical model to un-
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derstand projections of their design’s impact on ex-
isting systems, regardless of themorphological inter-
vention theypropose, as themodel contains no inter-
nalisedbias toward certaindesign solutions. Thepur-
pose of the mathematical model is to formalise de-
pendencies between singular design proposals and
the collective characteristics impacted by the pro-
posed intervention.

Prior studies have been done analysingmorpho-
logical characteristics of cities, but typically do so by
establishing spatial metrics that summarise an urban
area as a whole (e.g., Huang et al. 2007). When mak-
ing decisions about new urban developments, such
an approach is most useful when planning an entire
new urban neighborhood. By approaching morpho-
logical characterisation of existing and proposed ur-
ban systems through a multiscale complex systems
science method, we hope to gain new insights into
successful urban interventions. New types of insights
enabled by this approach are understanding how 1)
small local changes might impact the urban area as
a whole due to dependencies, and 2) decentralised
low-level decisions by occupants might affect cen-
tralised planning agendas.

TOWARDSAUNIFIEDMULTISCALEMODEL
OFMORPHOLOGY
As a step towards a unified model of morphologi-
cal complexity, we consider a set of historic example
cities representing a range of planning paradigms,
and a set of present-day cities for which detailed
open-source data is available (through the Open-
StreetMap (OSM) Foundation’s crowdsourced data
[1], Haklay andWeber 2008). We identify a set ofmor-
phological traits and characterise the spatial distribu-
tion of those traits across cities, through both spa-
tial mapping and mathematical distribution of their
values. Themicroscale representation that we define
to mathematically describe the shape of urban arti-
facts seeks to create a “faithful representation” (i.e. a
representationwith states thatmap one-to-one onto
the respective real-world system, as described in Bar-
Yam2016). That is, we seek to define a set of variables

that describes the repeating microscale attributes of
city morphology. Mathematical analysis of the map-
ping and distribution of component variables is used
in building a novel characterisation of homogeneity
and heterogeneity in the aggregate morphological
properties of the cities, capturing dependencies and
important macroscale information. The component
variables are then used in generating artificial mor-
phologies, discussed and compared to the real-world
cities. We conclude by suggesting future work and
extensions for real-world applications.

Method for analysis of real-world cities
Shape description at the microscale. We charac-
terise microscale morphological traits, examining
their aggregate properties at the macroscale. The
microscale traits are derived from the shape of in-
dividual artifact clusters (for instance, city blocks),
which we refer to as components. Though in
this implementation we limit ourselves to these mi-
croscale traits, future development may also include
mesoscale traits to characterise the local relation-
ships between neighboring artifact clusters, as well
as macroscale traits characterising city neighbor-
hoods.

We conduct several simple shape analyses to
build the set of characteristics of components (see
Figure 2). The overall description we build of each
artifact cluster is contour-based (i.e., based on the
xy-points that comprise its boundary, rather than in-
terior points) and is based both on the shape as a
whole, andon separated segments (terms refer to the
survey of Yang et al. 2008). Our component variables
are based on shape description techniques that are
as simple as possible. Some are approximated from
more complicated techniques in the literature, sim-
plified to extract the minimum information neces-
sary for our purpose. The component variables, each
mapped to the domain [0, 1], are as follows:

1. average angle at contour point (BE), approxi-
mating “average bending energy” (Yang et al.
2008);

2. quantity of contour points normalised to the
maximum present (QP);
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Figure 2
Schematic of six
component
variables that we
use to characterise
urban artifact
clusters.

3. average normalised segment length (CL),
approximating “chord lengths” (Yang et al.
2008);

4. standardarea ratio (AR), i.e., perimeterper unit
area, normalised to the maximum present;

5. standard normalised area (SA); and
6. average angle of inclination of segment (PA),

approximating themajor axis of the “principal
axes” (Yang et al. 2008).

There is someoverlap in the shape features that these
six traits individually describes for simple shapes. In
other words, some simple shape contours could be
described using just one or two of these traits. How-
ever, when describing a wide variety of shape con-
tours, the traits describe different properties. In other
words, a pair of complicated shapes that have a very
similar SA value might have substantially different CL
values.

Historic examples of urban planning paradigms.
We apply the component variables first to a group of
historic city maps, selected to qualitatively represent
a broad range of urbanplanningparadigms fromvar-
ious historic periods. The selected cities are Athens,
Sabbioneta, Timgad, Milton Keynes, Palmanova, and
Heijokyo (see Figure 3). We use historic maps that
capture key attributes of the respective paradigm.
Unlike the present-day city maps derived from OSM
data, the artifact clusters from historic maps are doc-

umented manually. We simplify the documented
contours using polyline simplification, to remove re-
dundant vertices.

Figure 3
Historic cities
selected from the
Kostof (1991) survey
of urban planning
paradigms. Top
(right to left):
Ottoman Athens,
Greece – no central
planning; 16th c.
Sabbioneta, Italy –
broken grid; ancient
Timgad, (Roman)
Algeria – grid with
irregular artifacts.
Bottom: 1960s
Milton Keynes,
England – ”organic”
plan; 16th c.
Palmanova, Italy –
diagrammatic plan;
8th c. Heijokyo
(Nara), Japan – grid
with focal artifacts.

When analysing these historic city maps, we apply
the macroscale characterisation to the entire city
plan, to capture each planning paradigm. Normalisa-
tions are relative to the complete set of components
in the city. By contrast, for the present-day cities from
crowdsourced OSM data, we apply the characterisa-
tion to spatially windowed data, to remove impact of
differences in overall city size.

Morphological homogeneity and heterogeneity.
After quantifying the individual artifact clusters in the
historic maps, we consider the aggregate properties
of the component variables. We analytically relate
the properties to qualitative macroscale information
and the planning paradigm of each city. In this con-
text, morphological homogeneity and heterogene-
ity is an important aggregate property. We charac-
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terise the degree of heterogeneity through the rarity
of each artifact cluster’s morphology (frequency of a
particular quantitative value). In particular, we test
whether this characterisation is able to 1) detect spe-
cial artifacts within an otherwise regular plan, and 2)
distinguish between a city with no central planning
and a city designed to look unplanned.

Figure 4
Comparison of the
component
variable
approximating
bending energy
(BE) with its rarity
indicator (rBE),
through histograms
and spatial
mappings.

For each of the six microscale component variables,
we calculate a rarity indicator as a smoothed distri-
bution of frequencies. For instance, for the rarity r(x)
of each component according to BE, we sequentially
sort all possible BE values B = (b1, b2, . . . , bn).
We calculate the number of occurrences N =
(n(b1), n(b2), . . . , n(bn)) of each value present in
the components. We smooth the number of oc-
currences such that r(bj) is defined as the sum of
the values (n(bj−2), n(bj−1), . . . , n(bj+2)), nor-
malised to the number of components present. This
gives us the new indicator rBE. The concept of het-
erogeneity established through this rarity indicator is
illustrated in Figure 4 for Athens, Greece. In the Ot-
toman city center of historic Athens, notable for its
lack of high-level planning (Kostof 1991), there is an
extensive variety of artifact morphology. For the BE
value of each component, the spatial mapping and
the histogram indicate that themorphology is highly

heterogeneous (Figure 4, left). Visual assessment of
the city map leads to the same conclusion. However,
if we look instead at the rarity of each artifact clus-
ter’s morphology, through its rBE value, the compo-
nents are highly homogenous (Figure 4, right). In
other words, in this example city and according to
BE, artifact morphology itself is heterogeneous, but
themorphological rarity of artifacts is homogeneous
– each possible value is almost equally unlikely.

Having calculated the rarity r(x) for all of
the component variables, we combine them into
a single indicator of an artifact cluster’s over-
all morphological rarity (MR). This overall rar-
ity M = (m1,m2, . . .mn) averages rBE, rQP,
rCL, rAR, rSA, and rPA, in other words, mj =
(r(bj) + r(qj) + r(cj) + r(aj) + r(sj) + r(pj))/6.
Combining the indicators gives a measure which can
be distinct from any one of them. The rBE of Athens
is highly homogeneous and has a low mean (see
Figure 4), but theMR of Athens is comparatively het-
erogeneous, with a higher mean (see Figure 5). In
this way, MR provides a representation of morpho-
logical homogeneity and heterogeneity. We apply
MR to analyse both the historic city maps and the
present-day cities from crowdsourced OSM data.

Present-day cities from crowdsourced OSM data.
OSM elements are labelled according to keys de-
veloped by the user community (Haklay and Weber
2008), such as amenity, barrier, building, or cycle-
way [2]. OSM does not include an element type that
represents a city block, group of buildings, or simi-
lar approximation of an artifact cluster. Obtaining ar-
tifact clusters from elements labelled as built struc-
tures was found to be susceptible to broad gaps and
inconsistencies in this crowdsourced data. We there-
fore derive contours describing artifact clusters pri-
marily from the elements labelled as roads. We use
the following steps:

1. connect coordinates of each element into an
open polyline object;

2. perpendicularly offset each polyline segment
in 2D by θ and−θ (where θ = 1m);

3. connect the neighboring end points of each

SMART CITIES - Volume 2 - eCAADe 35 | 565



Figure 5
Spatial mappings of
morphological
rarity (MR) on
present-day cities
and historic maps.
The standard
deviation of (MR)
for unplanned
urban areas is
approximately
double that of
planned areas.

pair of offsets to forma closedpolyline outline
(i.e. contour);

4. expand each contour by perpendicularly off-
setting each segment in 2D by θ · 5;

5. remove contours with an area ≤ α (where
α = 500 sq m);

6. starting with a randomly selected contour, it-
eratively aggregate (boolean union) with the
contour whose vertex (any) is closest to any of
the selected contour’s vertices, until all con-
tours are unioned;

7. separate the unioned contour into new indi-
vidual shape contours, to represent artifact
clusters;

8. remove contours with failed boolean unions;
9. remove contours that coincide with OSM ele-

ments labelled as parks;
10. add OSM elements labelled as buildings that

are outside all contours, to represent a second
type of artifact cluster;

11. remove contours with an area≤ α; and

12. simplify the contours using polyline simplifi-
cation, to remove redundant vertices.

This process results in an approximation of contours
for artifact clusters, according to visual assessment
(see Figure 6). Though not an exhaustively detailed
representation, as one might get by manually docu-
menting or using proprietary map data, it is a useful
representation for the current scope of our analysis.

The present-day cities selected for analysis in-
clude examples from various continents and cultural
influences, as well as planning paradigms. They are
Vienna, Austria; Nimes, France; Quezon City, Philip-
pines; Cairo, Egypt; Beijing, China; and Barcelona,
Spain. Instead of looking at the full map of these
cities (as we do for the historicmaps), we select a par-
ticular 1.5 sq km area to analyse. When calculating
component variables and rarity indicators for eachar-
tifact cluster contour, we use a window of 1.5 sq km
centered around that contour for normalisations (i.e.
including contours outside the analysis window).
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Figure 6
Comparison of the
full set of OSM
elements (left) with
the artifact cluster
contours derived
(right), for Vienna,
Austria. As most
city blocks in the
center of Vienna
have a solid
perimeter (see
Google Earth
location [3]), the full
set of OSM
elements (left)
shows the
substantial gaps in
documentation of
individual buildings
in this data set.

Results and discussion of analysis
Analysis results of present-day cities and historic
maps are summarised in tables 1 and 2, and Fig-
ures 5, 7, and 8. We test MR against two perfor-
mance evaluation criteria, in cities that have interest-
ing relevant attributes. The first test is distinguish-
ing between cities that have no central planning (in-
stead being distributedly organised by inhabitants),
and cities that are indeed planned, but are designed
with the intention of looking unplanned or “organic”
(Kostof 1991). The second test is detecting special
artifact clusters within an otherwisemorphologically
regular city grid. We discuss the analysis results in
terms of these criteria.

Distinguishingbetweenplannedandunplanned.
From the historic maps, Ottoman Athens is an exam-
ple of no central planning. The 1960s plan for Milton
Keynes is an example of a design meant to look un-
planned. Of the present-day cities, examples of lit-
tle to no central planning in a particular area are Vi-
enna, Austria – old city center; Nimes, France – old
city center; Cairo, Egypt – informal settlement neigh-
borhood; and Beijing, China – old residential hutong
neighborhood. Multiple present-day examples with
low central planning are used, because of the poten-
tial variety that may result from distributed organisa-
tion. Quezon City, Philippines is a present-day exam-
ple of a particular area designed to look unplanned,
according to the style of the “GardenCity”movement
(Kostof 1991).

The standard deviation (SD) of MR in Athens is
nearly double that of Milton Keynes (see table 1),
meaning that Athens is more morphologically het-

erogeneous. The distribution spreads of MR in the
four present-day unplanned urban areas are simi-
lar to that of Athens, with three having a larger SD.
Nimes has the narrowest distribution spread of the
four, next is Vienna, then Beijing, and finally the
widest of the four is Cairo. The SD of MR in the
planned area of Quezon City is very similar to that of
Milton Keynes. Overall,MR characterises the present-
day cities in a similar way to the historic maps, ac-
cording to degree of central planning. This can be
visually confirmed in Figure 5. In both the present-
day cities and the historic maps, the standard devi-
ations of MR in unplanned urban areas consistently
are approximately double that of areas planned to
look unplanned (see table 1). Therefore, among the
cities analysed, the characterisation MR successfully
distinguishes between those that have little central
planning and those that are planned in a style em-
ulating distributed organisation. In order to further
investigate these findings, a larger set of cities could
be analysed.

Table 1
The mean and
standard deviation
(SD) of
morphological
rarity (MR) in
analysed cities – as
relevant to the
criterion of
distinguishing
between planned
and unplanned. Detecting special artifacts in a regular grid. From

the historic maps, Heijokyo and Timgad are both ex-
amples of regularly gridded urban areas with spe-
cial artifacts periodically distributed. As Timgad is a
Roman military town, the special artifacts are civic,
while in Heijokyo the special artifacts are imperial
(Kostof 1991). Of the present-day cities, a relevant ex-
ample is the semi-regularly gridded Eixample area of
Barcelona, Spain, specifically the area containing the
monument Sagrada Familia.
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Figure 7
Spatial mappings of
morphological
rarity (MR) on a
present-day city
and historic maps.
(MR) identifies the
special artifacts as
being rarer than
those in the
surrounding regular
grid.

Figure 8
Histograms of (MR),
annotated to
indicate gaps
between groups.

Table 2
The gap in
morphological
rarity (MR) between
components
grouped by rarity in
analysed cities – as
relevant to the
criterion of
detecting special
artifacts.

The MR characterisation distinguishes the special
components of Heijokyo and Timgad as being mor-
phologically rarer (i.e., having a lower MR) than the
gridded part of the city. Gaps in MR exist between
groups of rarer components and groups of more
common ones (see table 2, histograms in Figure 8),
with the group of common components having gaps
of ≤ .035 MR between individuals. In Timgad, the
components form three groups. In Heijokyo, they
form two groups, with the rare components being
heterogeneous and the common ones being highly
homogenous. Although the grid in Barcelona has
more variation, MR distinguishes Sagrada Familia as
being rarer than other components in the area (see
yellow element in Figure 7). As with the above anal-
ysis, these findings could be investigated within the
context of a larger set of cities.

Method for generatingmorphology
We conduct a simple generation of morphology us-
ing the characterisation MR, in order to suggest di-
rections for future development. First, we generate
shapes according to MR and the component vari-
able QP. Second, as mesoscale relationships are not
currently represented, we distribute the shapes ran-
domly at a sufficient distance that they do not in-
tersect. Third, we spatially condense the shapes
through an iterative polygon packing process that
preserves their orientations and approximate rela-
tive positions (see Figure 9). Finally, we expand the
shapeswhere possible and simplify to remove redun-
dant vertices.

Results and discussion of generation
We generate three homogeneous morphology ex-
amples and two heterogeneous ones. In each gener-
ation, we set QP to no deviation (i.e., all components
have QP equal to the mean, before simplification). In
the homogenous generations (MR SD< .03), we set
the QP mean to 4, 5, and 15 (left to right, top of Fig-
ure 10). In the more heterogeneous generations (MR
SD > .09), we set the QP mean to 15 and 4 (left to
right, bottom of Figure 10). The results of these sim-
ple generations are visually similar to their input de-
grees of MR heterogeneity. They also give clear ev-
idence for the benefits of extending the character-
isation to mesoscale information. Generating mor-
phologies that resemble real-world cities would re-
quire input parameters that encompass the organi-
sation and distribution of neighboring components,
capturing attributes like density and alignment.

Future work for a unifiedmultiscalemodel
Characterisation of the mesoscale may be incorpo-
rated, such that the unifiedmodel describes not only
individual shapes but the spatial distribution and or-
ganisation of those shapes. This would extend the
characterisation to better encompass open elements
(e.g., plazas), as well as overall structural attributes
like density, porosity, and local similarity. Also, gen-
erating morphologies according to a full set of vari-
ables is an ambitious goal, which could be investi-
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gated through shape analysis and machine learning
methods.

Figure 9
Three timesteps in
the iterative
packing of
generated
components.

Figure 10
Morphologies
generated with
homogenous (QP).
Morphologies in
the top row,
generated using a
low (MR) SD, look
homogenous.
Those in the
bottom row,
generated using a
higher (MR) SD,
look more
heterogenous.

To support model extensions, contours could be ex-
tracted from other data sources. OpenStreetMap
data is accessible and sufficient for our current work,
but its limits may present obstacles in further devel-
opments. OSM’s tagging system [2] does not cur-
rently incorporate the designation of open areas as
opposed to enclosed areas, making mesoscale in-
formation difficult to derive. The accuracy of using
thoroughfares as the basis for artifact clusters is also
limited. Furthermore, because OSM data is crowd-
sourced from amember community (Haklay andWe-
ber 2008), small or remote urban areas have limited
documentation. For these reasons, it would be useful
to extend our method to other sources of city mor-
phology data, such as satellite imagery or light de-
tection and ranging (LiDAR) data (see Jin and Davis
2005; Kabolizade et al. 2010).

The final category of future work is to extend the
method to applications by combining our model of
morphology with other types of information, such

as models of social and economic dynamics. Appli-
cation to decision-making about real-world systems
is a key motivation of the complex systems science
approach of extracting important information from
large quantities of detailed and unstructured data
(Bar-Yam 2016).

Extending themethod to applications
A possible application of the method would com-
bine it with models of socio-economic city dynam-
ics. This couldpotentially illuminatephenomena that
tie individual buildings to broader occupant behav-
ior (such as the ’Bilbao effect’ [4]). Additionally, inter-
est has been building in the literature for new meth-
ods to analyse the subjective characteristics of built
environments and their impact on occupants’ well-
being (see, for instance, Mouratidis 2017; Sayegh et
al. 2016). This interest could be supported by tying
morphological characteristics to social media or mo-
bile phone data (e.g., França et al. 2015; De Nadai et
al. 2016). Beyond the understanding of city dynam-
ics, themethod could be investigated for broader use
in generative design, specifically through the repre-
sentation of high-level design objectives for artifacts
that are constructed through self-organisation (see
flora robotica [5], Hamann et al. 2015; Heinrich and
Ayres 2016).

CONCLUSION
We presented a characterisation of morphological
homogeneity and heterogeneity in urban artifacts,
a novel approach to the understanding of multi-
scale citymorphology as a complex system. Through
this, we analysed real-world cities, both from historic
maps and present-day crowdsourced data. We used
the characterisation to distinguish between emer-
gent urban areas that have no high-level planning
and areas that were centrally designed to emulate
this effect, as well as to detect special artifacts in an
otherwise regular city grid. We also used the charac-
terisation to generate simple morphologies, the re-
sults of which support our suggestions for future de-
velopment.
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