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Abstract 
This paper explores how computational methods of representation 

can support and extend kagome handcraft towards the fabrication of 

interlaced lattice structures in an expanded set of domains, beyond 

basket making. Through reference to the literature and state of the 

art, we argue that the instrumentalisation of kagome principles into 

computational design methods is both timely and relevant; it addresses 

a growing interest in such structures across design and engineering 

communities; it also fills a current gap in tools that facilitate design 

and fabrication investigation across a spectrum of expertise, from the 

novice to the expert.  

The paper describes the underlying topological and geometrical 

principles of kagome weave, and demonstrates the direct compatibility 

of these principles to properties of computational triangular meshes 

and their duals. We employ the known Medial Construction method 

to generate the weave pattern, edge ‘walking’ methods to consolidate 

geometry into individual strips, physics based relaxation to achieve a 

materially informed final geometry and projection to generate fabri-

cation information. Our principle contribution is the combination of 

these methods to produce a principled workflow that supports design 

investigation of kagome weave patterns with the constraint of being 

made using straight strips of material. We evaluate the computational 

workflow through comparison to physical artefacts constructed ex-ante 

and ex-post. 

1. Introduction 

The term “weaving” covers a broad range of textile production methods. 

Common to all is the principle of material interlacing to generate local 

systems of friction-based reciprocity. This imbues resulting artifacts with 

robustness through structural redundancy, resilience through friction-ba-

sed junctions, efficient use of material and potent aesthetic qualities. 

These attributes have long been exploited in a diverse range of use are-

nas, through craft-based tacit knowledge or engineering-based explicit 

knowledge, to produce lightweight artifacts with emergent properties 

that offer advantage beyond those of the constituent materials. 
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1.1 Kagome 

Kagome represents a particular class of weave which, in many ways, is 

conceptually closer to braid. Where conventional weave is defined as the 

interlacing of two distinct sets of yarns (warp and weft) at right angles 

to each other, braid is defined as the interlacing of three or more distinct 

sets of yarns (or ‘‘weavers’’) at oblique angles to each other [1]. In kagome, 

the geometrical archetype arranges these three sets as a regular trihex-

agonal tiling with a vertex configuration (3.6)2 and p6 symmetry.  

 

Figure 1: A regular planar sparse kagome weave comprising three dis-
tinct sets of weavers. The underlying pattern is a trihexagonal tiling. 

The physical properties of these lattices are determined by the interplay 

between combinatorics (valences of vertices and faces, connectivity, and 

topology), geometry (vertex positions) and material attributes (mechani-

cal and geometric). Tacit understanding of this interplay allows the crafts 

person to fabricate close approximations of arbitrary design targets. 
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1.2 Motivation

Kagome represents a highly principled method for producing complex 

curved geometries with a single mesh structure, without the necessity 

of joinery or the fabrication of nodes. The self-bracing capacity, greater 

shear resistance (compared to biaxial weave), ability to rigorously control 

geometry, high redundancy, ability to locally repair and potent aesthetic 

qualities, make triaxially woven structures an attractive target for investi-

gation across a diverse range of design and craft practices, including 

architecture. However, without means for visualisation and interrogation, 

complex design targets can remain challenging for experts to strategise 

and realise (keeping account of the number of weavers, their crossings 

and potential self-crossings, calculation of material requirements, asses-

sing discretisation due to material lengths, etc.), and remain out of reach 

for those without a tacit craft understanding. 

Figure 2: Triaxially woven structures produced using straight maple 
strips. Regular (left) and arbitrary (right) geometries are clearly gover-
ned by the interplay between introduced topological defects, material 
stiffness and material geometry.  

By intersecting the underlying principles governing the interplay of topo-

logy and geometry in triaxial systems with computational representation, 

a platform for expanded exploration of these systems can be establis-

hed. This holds relevance to a wide variety of current and emerging 

domains of application. 
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Figure 3: Two pre-relaxed kagome patterns approximating design geo-
metries. The weave topology is directly derived from inherent properties 
of the design mesh (valence) and the weave pattern directly derived 
from geometric attributes of the mesh dual (connected edges and their 
lengths). 

In this paper, we present a method for generating weave patterns with 

the constraint that they be fabricated from straight strips of material. 

Our motivation for working with straight strips relates to supporting the 

future exploration of kagome applications at scales ‘‘beyond the basket’’, 

where efficient use of material becomes a poignant issue. We address 

key representational challenges including the generation of appropriate 

topology, or mesh valence, to achieve a design target, together with the 

relaxation of the mesh to simulate material performance – both of which 

hold influence over final shape. In addition, we demonstrate the extrac-

tion of fabrication instruction and the physical making of computationally 

developed design targets. We position this work in connection with 

the literature to: 1) differentiate it from related approaches (specifically 

related to the use of geodesics); 2) identify the open challenge that our 

work addresses; 3) cite computational methods that we build upon.  

Finally, we discuss our contribution, identify its limits and offer  

trajectories for future work. 
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2. Topological principles governing  
kagome geometry
The archetypal kagome lattice is a woven version of a tri-hexagonal 

tiling; the weavers in one direction incline at an angle of 60° to those of 

the other two directions, and the lattice, consisting of equilateral triang-

les and regular hexagons, will cover an infinite flat plane (Fig. 1).

2.1 Single curvature
Single curvature of the kagome lattice is easily achieved by bending 

the plane, creating a developable surface. If the axis of curvature exists 

across the centre points of opposite edges in the unit hexagon, one set 

of weavers will act as arches perpendicular to this axis. If the axis of 

curvature exists across opposing vertices of the unit hexagon, one set 

of weavers will act as beams parallel to this axis. Limits on the radius of 

curvature are dependent on the mechanical properties of the material.

Figure 4: Single curvature is easily achieved in the regular triaxial lattice 
and can follow any line of hexagonal symmetry – across opposite edge 
centres privileges arches, across opposite vertices privileges beams. 

2.2 Double curvature

Breaking topological symmetry of a regular trihexagonal tiling by the 

introduction of geometric singularities will induce double curvature [2]. 

These topological defects, or ‘‘lattice disclinations’’, are the mechanisms 

that introduce in-plane strains and result in out-of-plane deformation [3]. 

Positive Gaussian curvature results from the introduction of <6 sided 

cell. Figure 5 shows physically woven examples in which a single cell has 

been substituted; firstly with a pentagon, then a quadrilateral and finally 

a triangle. Of note is the way in which deformation out-of-plane becomes 

more pronounced as edges are removed from the substituted polygon. 

Figure 6 shows physically woven examples of negative Gaussian  
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curvature resulting from cell substitution with a polygon of side >6; firstly 

a heptagon, then octagon and finally a nonagon. Here, it is the increase 

in sides of the substituted polygon that results in a more pronounced 

curvature. Despite changes in topology through the introduction of 

disclinations, the vertex valence of the materialised lattice is maintained 

at v4 throughout, corresponding to the local crossing of two weavers.
 

Figure 5: Introducing disclination in the regular lattice by substituting 
a <6 edge count polygon produces positive Gaussian curvature. From 
top to bottom, each row decreases an edge – pentagon; quadrilateral; 
triangle. 
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Figure 6: Introducing disclination in the regular lattice by substituting a 
>6 edge count polygon produces negative Gaussian curvature. From top 
to bottom, each row increases an edge – heptagon; octagon; nonagon.

Weaving disclinations provides the means to locally distort the lattice, 

causing a controlled deformation of the surface out of plane. Strategic 

combinations of disclinations, informed through tacit knowledge, allow 

the crafts person to realise specific and diverse design intent (Fig. 7). 

However, in an inexhaustible space of possible combinations, enlisting 

computation becomes a relevant tool for exploring, searching and navi-

gating this space.
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Figure 7: A diverse variety of artefacts demonstrating results from  
strategic combinations of disclinations. 

3. State of the art

In this section, we highlight relevant literature restricted to computational 

representation of weave patterns and related computational methods 

with a particular focus towards architectural design. We briefly cover 

methods for establishing and refining mesh topologies, approaches 

to weave in general, approaches to kagome representation in particu-

lar and provide a summary that identifies the open challenge that we 

address. 

3.1 Mesh topology and refinement
With a focus on mesh representations that have relevance to archi-

tecture, Schiftner et al. provide a method for refining triangular design 

meshes such that the incircles of mesh faces form a packing – a CP 

mesh [4]. This class of mesh is directly related to the kagome pattern, 

which can be produced by connecting the centres of tangent incircles. 

As precise CP meshes are rare, an optimisation algorithm is used to re-

fine a mesh towards an approximation of the design target. The mesh is 

generated by producing an isotropic centroidal Voronoi diagram which is 

iteratively relaxed using Loyd’s algorithm. However, this leads to random 

placement of singularities which is undesirable if aiming to achieve regular 

geometries. Use of the mesh operators, edge collapse, edge flipping and 

edge splitting is a common method for locally refining the topology of 

mesh as described in Narain et al. [5] and allows approximate locating of 

required valence in the required position. 
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3.2 Approaches to weave pattern representation  
in general

Computational representation of weave patterns in general have been 

well studied, however, the majority of these relate to biaxial weaving or 

braiding. In most cases, the representation task is approached using the 

tiling method described by Mercat [6] in which a predefined tile dictio-

nary defining local weaver geometry and crossings can be applied to a 

quad mesh. This has been applied in the context of arbitrary manifold 

design meshes [7], and with specific focus on braided structures [8, 9]. In 

these cases, the principled approach to representation, which considers 

interlacing and constraints related to fabrication, provides workflows and 

tools for realising complex morphologies that are directly producible. 

However, these tools operate with quad meshes which are less suited 

to the kagome representation task. In another approaches, modelling 

proceeds through direct manipulation of explicit geometry [10]. This is 

not deemed to be a viable approach for the task considered here, consi-

dering the opportunity for exploiting the close affinity between the data 

structures of triangular meshes and kagome pattern principles, and the 

culture of use surrounding meshes for design expression. 

3.3 Approaches to kagome pattern representation  
in particular

Within architectural design specifically, approaches for defining kagome 

patterns tend to exhibit shortcomings by either: 1) only considering a to-

pologically regular trihexagonal tiling; 2) exploring geometrical outcomes 

of fixed and predetermined topologies; 3) abstracting out the weaving 

principle such that the mechanical properties gained by interlacing are 

sacrificed, whilst maintaining the topology of the trihexagonal tiling. 

In the first case (which is often coupled with the third case) complex 

geometries are achieved by a distortion of the regular grid rather than 

conforming to the principles for achieving curvature described in the se-

ction above [11, 12]. This can present significant challenges for fabrication 

strategies, junctioning methods and material use. In the second case, 

relaxation of pre-determined and fixed topologies can result in principled 

patterns, but impedes fluid design investigation due to a lack of ‘‘on-the-

fly’’ topology editing methods. 

Kagome patterns have also been explored as a derivative of a gene-

ral approach to free-form surface segmentation using geodesic pattern 
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generation [13, 14]. The cited literature describes two approaches –  

N–patterns from level sets, and the use of a regular trihexagonal web of 

geodesics – but also identify limits in both cases. Pottman et al. acknow-

ledge that the level set approach produces webs of curves that are as 

geodesic as possible, but deviations are inevitable in conditions of strong 

Gaussian variance [13]. Deng et al. point to the fact that true geodesic 

webs do not exist in general and that adequate surface approximation is 

not always possible [14].  

In contrast to these geodesic methods, which operate from proper-

ties of a surface (which in practice is generally approximated by a mesh), 

our approach operates directly on properties of the mesh and form-finds 

the final geometry through a relaxation procedure. This models the 

actions of the local reciprocal systems, which, in practice, we find causes 

material strips to deviate from true geodesics due to induced torsions 

often arising in areas of pronounced double curvature. In short, the use 

of geodesics to derive kagome patterns cannot cover all cases that can 

be materialised in practice, whereas a principled kagome pattern can 

always be derived from a manifold triangular mesh [15].  

The strong affinity between kagome lattice patterns and computa-

tional triangular manifold meshes have been described by Mallos and 

implemented in the context of a kagome design and fabrication tool 

[ibid]. However, to our knowledge, this tool does not implement a step 

that allows the consideration of kagome patterns resulting from straight 

members – a case that requires relaxation of the kagome geometry with 

specific relaxation constraints. 

3.4 Identifying the open challenge 
In summary, and in reference to the state-of-art presented here, we 

can state that whilst there exist a number of methods and algorithms 

related to the kagome representation task, to the best of the authors 

knowledge, a holistic computational approach that aids designers by 

coupling specific fabrication constraints with the principles for “real-time” 

exploration of arbitrary kagome topologies and geometries, remains an 

open challenge.
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4. Computational approach
Our approach to achieve a principled and generalised method for 

kagome representation, of arbitrary geometries, makes use of various 

algorithms and methods described in the literature; we declare these 

below. The contribution of this paper is to draw these together to fulfill 

the representation task with a focus on fabrication using straight strips 

of material. The representation task has three stages:

1. topology generation

2.  kagome pattern generation

3. relaxation to final geometry

4.1 Topology generation

Using the low-polygon modelling method [16], a coarse triangular mesh 

approximation of the desired geometry is created. In the example shown, 

the target geometry to model is a existing kagome “socket” condition 

comprising a regular planar face intersected by a singularly curved tube. 

The transition exhibits negative Gaussian curvature (Fig. 8).  

The topology of the low-poly mesh is adjusted to establish the 

required valence structure. Adjustment is done using conventional mesh 

refinement operations; edge splitting, edge flipping and edge collapsing [5].

 

Figure 8: The target geometry to model is a detail of an existing  
kagome weave with negative Gaussian curvature (left). This is  
coarsely approximated with a low-polygon mesh (right).
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Mesh valence of a regular planar tiling is 6, positive Gaussian curvature 

requires <6 (but >2) valence and negative curvature requires >6 valence. 

In this case, six valence 7 conditions around the rim of the transition and 

regular valence 6 conditions to the stem have been introduced. Once the 

refined valence structure is established, intermediary mesh operations 

such as relaxation (as in the case shown in Fig. 9) or mesh subdivision 

can be applied. 

4.2 Kagome pattern generation
The mesh dual is obtained and decomposed into a data structure of 

individual vertices and their three connecting edges. A new vertex is 

then placed at the centre of each connecting edge and these three new 

vertices connected with a closed polyline. This operation essentially 

truncates the original vertex, creating a new facet that represents the tri-

angular element in the kagome lattice. The operation is equivalent to the 

medial construction method described by Mallos [15]. At this point, the 

weave pattern is purely visual and contains no information about weaver 

continuity; all higher edge faces of the lattice are visually inferred from 

their surrounding triangles.

The list of truncated face polylines is now converted into a data 

structure that represents individual weavers. The polylines are exploded 

into individual linear elements and then “walked” to find connected seg-

ments that meet a criteria of minimum angular deviation. Once weavers 

have been identified, they are locally displaced in an alternating pattern 

(up/down) along the surface normal vector at crossing points to model 

interlacing. Once interlaced, each weaver is converted into a triangular 

mesh approximating the material strip width using the method described 

by Vestartas et al. [9]. At this stage, meshes may exhibit areas of interse-

ction as can be seen in Figure 11 (right).

4.3 Relaxation to final geometry
The weaver meshes are relaxed using the constraint-based solver 

Kangaroo2 for Grasshopper. Additional constraints are added to ensure 

weavers relax into developable geometries approximating straight strips, 

and to prevent collisions and intersections between weavers – thus 

preserving the structure of interlacing. Having found the final geometry 



 84 AAG2018  85

Figure 11: The edges of the kagome pattern are “walked” to construct 
individual weavers (left). Weavers are then displaced normal to the 
surface to model interlacing, and then meshed according to material 
geometry (right). 

Figure 10: The mesh dual is obtained (left) and each vertex “truncated” 
to generate a visual kagome pattern (right). This pattern does not yet 
describe individual weavers. 

Figure 9: The mesh is refined by collapsing, splitting and flipping edges 
to modify the valence according to the required curvature (left). A pre-
liminary relaxation has then been performed after adding an additional 
layer of outer triangles in the plane to encapsulate the valence 7  
conditions (right). 
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through relaxation, fabrication information can now be extracted (Fig. 12). 

Weaver lengths are easily determined, and being developable, projected 

as unrolled strips and marked with crossing points indexed with other 

weavers or self-intersections. Physical limits on material length can 

inform weaver discretisation, ensuring sufficient material cross-over for 

splicing.

5. Two cases
In this section we briefly present two case studies that examine 

relationships between a computational representation and a physical 

artefact – one constructed ex-ante and the other ex-post modelling. 

The first study demonstrates the use of our approach in the context of a 

simple fabrication exercise. The second study demonstrates the use of 

our approach in the context of computational design exploration. 

Figure 12: The modelled weavers are relaxed to ensure they corres-
pond to straight elements and the final weave geometry is form-found. 
Fabrication information is then extracted and includes length of strips, 
strip ID’s and strip crossing ID’s. This information is applied to the weave 
representation (left) and as material layout (right).
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Figure 13: Extraction of fabrication information to produce a woven 
stadium of revolution.

5.1 Case 1: Stadium of revolution

In this first case, we aim to construct a physical weave from computationally 

generated fabrication information. A stadium of revolution, or ‘‘capsule’’ geo-

metry, is defined as the design target. This geometry comprises a cylinder 

with single curvature and two hemispherical caps. Drawing upon the princip-

les governing double curvature in kagome lattices, we expect the hemisp-

herical portion to contain pentagonal ‘‘defects’’ to achieve local synclastic 

curvature. Each pentagon included in the mesh increases the aggregate 

angular deficiency by π/3, therefore a triaxial mesh with 6 pentagons will 

make a hemisphere. The rest of the lattice can be achieved using a regular 
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hexagonal tiling. We follow the modelling steps described in section 4 to 

determine how many weavers, their respective lengths, crossings with other 

weavers and self-crossings. We see from this analysis that the woven figure 

comprises 6 simple rings of length cca. the circumference of the cylinder, 

and two longer weavers with multiple self-crossing points. This is verified 

with the physically weaving shown in Figure 13 (bottom right).

5.2 Case 2: The distorted helix
In this second case, the kagome helix is woven prior to any computational 

modelling. Rather than aiming towards verisimilitude of the model, we 

demonstrate how the relaxation step can provide exploratory insights 

through simulating the interplay of material behaviour and topology. The 

helix is modelled and the mesh refined, but in this case disclinations are 

randomly placed within the mesh. As the relaxation proceeds and weaver 

geometries straighten according to our fabrication constraints, and local 

sites of curvature emerge where hexagons have been substituted with 

synclastic curvature inducing pentagons, or anticlastic curvature indu-

cing heptagons. In this case, we demonstrate how computation provides 

an accessible and fast (compared to physical weaving) exploratory tool 

to assist the designer in searching the inexhaustible space of possible 

disclination combinations, and potentially discovering novel aesthetic 

expressions.  
 

Figure 14: A physically woven helix with mesh disclinations placed to 
realise a regular geometry (left) compared to a simulation where discli-
nations have been randomly located (right). This shows the necessity for 
the relaxation step, but also suggests interesting geometric articulations 
and ‘‘organic’’ expressions of a corrupted ideal.
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6. Towards architectural and structural 
applications
the instrumentalisation of a principled computational approach to kagome 

pattern generation and representation has broad applicability. Within 

architecture, hexagonal tiling patterns have been exploited to stunning 

spatial effect by Shigeru Ban in projects such as the Pompidou Metz 

and Nine Bridges golf club. However, in these cases, double curvature is 

achieved through a distortion of the regular hexagonal tiling. The resulting 

geometry is realised through complex shaping of stiff curved laminated 

members. In such a context, the application of kagome topology principles 

for achieving complex geometry could offer a more rational approach to 

geometry with the implication of greater efficiency in fabrication. 

In the context of elastically bent structures, the attributes of mecha-

nical performance arising from interlaced material and efficient spanning 

of space with straight strips of material have been demonstrated in 

the CODA Jukbuin Pavilion. In this case, the weave principle of mate-

rial interlacing is maintained but double curvature is achieved through 

material bending behaviour rather than steered by topology – the design 

topology is a regular hexagonal tiling. This results in global curvature 

effects but denies the possibility of highly localised double curvature. 

Nevertheless, this work is of particular interest as it demonstrates the 

transfer of interlacing principles at architectural scale.

In framing a direction for future work, our emerging hypothesis is 

that architectural scale structures can be realised with full adherence to 

kagome weaving principles, including material interlacing. This hypothe-

sis is supported by a comparative analysis of two hypothetical gridshells 

which shows that a kagome gridshell outperforms a quadrilateral grids-

hell for a very similar construction cost [17].

Our outlook is towards the use of elastically bent members rather 

than stiff curved laminated members. However, as we discuss above, 

we see kagome principles being applicable in both contexts - in the 

former, towards bending-active structures that adhere more closely to 

their basket antecedents; in the latter, towards rationalised approaches 

to geometry and fabrication. In the context of elastically bent structures, 

principle challenges revolve around structural capacity. Yet despite this 

challenge, the opportunities for material efficiency, a rationalised app-

roach to free-form geometry and efficient fabrication minimising the use 

of connectors make this a compelling territory for further study.
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6.1 Limits and future work 

Where the work presented in this paper has limited itself to exploring 

the task of kagome representation and simulation with consideration 

to fabrication constraints, analysis of structural performance marks a 

necessary next step – especially if seeking to explore architectural 

applications. Preliminary investigations of model transfer to the structu-

ral analysis platform Autodesk Robot indicate that representational 

outcomes generated by the approach described are poised to be taken 

forward into this domain of analysis. In addition, the ability to computa-

tionally represent arbitrary kagome geometries and interrogate these 

from a fabrication perspective, presents the compelling opportunity of 

investigating robotic production. 

7. Conclusion

This paper has presented a principled computational approach to the 

task of kagome representation in arbitrary triangular meshes. Following 

the literature, we have demonstrated the strong affinity between the 

principles governing kagome patterns and intrinsic topological featu-

res of computational meshes and geometric features of their duals. 

We have shown how design meshes can be manipulated to adjust the 

baseline valence 6 structure that governs planar kagome tiling, upwards 

and downwards to create sites of local double curvature. We have also 

shown how the kagome pattern itself is derived from the mesh dual by 

vertex truncation to the mid-points of connected edges – following the 

medial construction method.

We have extended the state-of-the-art by intersecting this method 

with physics based relaxation to allow simulation of the interplay between 

topology and notional mechanical properties of weaver material, thereby 

constraining results within the bounds of fabrication criteria – specifically 

that patterns can be made from straight strips of material. This constraint 

is seen to be a benefit for enticing transferability and use within domains 

where material saving can be a key issue, such as architecture.

FInally, the approach presented here contributes a method that can 

be computationally leveraged to explore and search the inexhaustible 

domain of possible kagome patterns, and opening the possibility of this 

search to be conducted by both the novice and the expert. 
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