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ABSTRACT
Morphology of an artificial structure can be designed beforehand
or it can be developed over time via interactions between differ-
ent parts of the structure. Since structures are supposed to sustain
and act in their surrounding environments, a successful genera-
tive process needs to consider both the global and local effects of
environment during morphogenesis. As in their biological counter-
parts, manymorphogenesis models are distributed over the growing
structure. In this paper, a novel distributed model, called Vascular
Morphogenesis Controller (VMC), is introduced by being inspired
from branching mechanisms in plants where every branch of a
plant acts as an autonomous agent competing with the other agents
for a larger share of the resources for growth. To the best of our
knowledge, this is the first explicit use of distribution of limited
resources in morphogenesis process of artificial structures. The
model is implemented for growing a simulated modular robot that
is designed based on a physical robot. The parameters of model
are successfully evolved to direct the growth of robots in different
environmental condition, i.e., in harsh and calm environments, in
various light conditions, and in a layered environment. The results
demonstrate usability of the model despite simplicity of its logic.
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1 INTRODUCTION
Growth is a ubiquitous phenomenon in nature. Living organisms
grow and develop their morphologies based on their genetic infor-
mation, conditions of their environment, and the rules of physics
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and chemistry governing the dynamics of their world [12]. Mor-
phology of biological systems develops over time in a process of
growth changing their body and nervous system. In biological
studies, evolutionary developmental biology (EvoDevo) [16, 28] is
the approach towards investigation of self-organized processes of
growth by looking into embryogenetic development and differenti-
ation of cells. Growth and morphogenesis is also a topic of interest
in artificial and robotic systems, i.e., in evolutionary robotics [2]
and modular robotics [19]. In such artificial systems, as in their
natural counterparts, patterns and structures are a result of self-
organization. The different components interact with each other
and with the environment leading to high diversity and adaptivity
[4, 12, 31]. Self-organizing morphogenesis is usually implemented
by using indirect encodings where the encoded parameters are sub-
ject to evolutionary algorithms for optimization. The body of the
robot or the controller structure develop over time based on a set
of parameters encoded in the genotype, a set of rules determining
how those parameters drive the development, and the inputs to the
system resulting from the interactions between the system and its
environment (e.g., [8, 22, 29]).

While most of the work in robotic morphogenesis is done in sim-
ulation, a number of attempts exist towards real physical hardware
[3, 10]. Many morphogenesis approaches are strongly inspired from
the concepts of real cell development, for example by implement-
ing variants of gene regulatory networks and the concepts of cell
division and migration [1, 5]. Other methods (e.g., [14, 22]) use the
more abstract generative encodings, such as different variances of
L-systems [18]. Generative encodings start with a basic unit (a seed)
and a set of context-free developmental rules driving the develop-
ment of morphology. In [26] the L-system is extended by adding a
swarm of interacting agents and a swarm grammar defining their
dynamics. Another swarm-based morphogenesis model is the em-
bryomorphic model [6] that implements the concepts of gradient
diffusion for positional information, gene regulatory networks for
transformation of cell types, and cell division. The model draws
a separation between the physical level and the information level
of the growing system in order to keep the generality. In [17] a
morphogenesis system based on Cellular Automata (CA) is defined
with different types of cells including transport, barrier, and normal
cells where the transport cells stay connected with each other to
serve the normal cells during growth. Several different morphogen-
esis approaches are reviewed in [7]. The morphogenesis methods
of structure development have also been applied to the field of
computer networks. For example, in [23], a self-organized peer-to-
peer overlay network develops in a computer network by using an
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algorithm inspired from fungal growth that maintains communica-
tion between nodes and demonstrates robustness against network
failures.

In the context of the EU-funded project flora robotica [9, 13],
structures are developed to act as a robotic part of a bio-hybrid
system consisting of plants and robots [27]. The bio-hybrid self-
organizes into architectural artefacts that support their own growth
and resource balancing. The plant side of the bio-hybrid grows and
influences the robotic structure. In turn, the structure develops into
different shapes and influences the growth of the plant side in a
dynamic environment in interaction with humans.

In this paper, we are interested in the growth of robotic struc-
tures in a distributed and balanced way. Here, a robotic structure is
a modular robot where new modules can be added on demand in
the process of growth. A distributed morphogenesis control algo-
rithm runs independently in every module of the robot. The local
controllers self-organize the process of growth based on local inter-
actions with each other and with their environment, deciding how
the growth should continue such that the global objectives are met.

Our morphogenesis approach for robotic structures is based on
inspiration from the mechanisms of branching and branch compe-
tition in plants. Various branches of the same plant act as agents
exploring their local environments and finding preferable regions
and resources (i.e., light). Plants grow and extend their branches and
develop new ones. Different branches compete for common global
resources (i.e. water) and winning is biased towards the branches
that find better local resources (i.e., light) [11]. The information
collected by the branches are used to find preferable regions of the
environment leading to new shapes of the organism that facilitates
access to more resources in a cascading way. In a more abstract view,
branches are seen as members of a swarm competing for limited
shared resources and it leads to new formations of the swarm that
result in more overall resources for the system as a whole. Water,
nutrients, and sugars are transported to different parts of a plant
through the plant’s vascular system. Evidence suggests that the
vascular system not only transports materials needed for survival
of the plant, but it is also a long-range communication channel that
enables the plant to adapt to changes [20].

There are several biological models of plants, e.g., modelling
transportation of materials via vascular systems incorporated in
growth models [32]. While the models developed in the field of
plant science are mostly complex, focusing on details of particular
plants, here we are interested in a simple decentralized model that
captures the general concepts of growth such that it can be easily
implemented in a limited robotic system. A preliminary version of
the current work has been shortly introduced in [30]. In this work,
we are inspired from development of vascular systems in plants
and their effects in the growth of different competing branches in
an abstract level. We propose a novel controller called “Vascular
Morphogenesis Controller (VMC)” for guiding the morphology
of structures based on competition and resource balancing. The
method differentiates between the information level (algorithmic
logics of growth) and physical level (actual structure) in order to
keep generality and broad scope of usability for the morphogenesis
algorithm. The actual morphology of a structure being developed
by this method is the result of parameters of the algorithm, and

the resource sharing and competition mechanisms, as well as the
physical realization of the system, and their interactions with the
environment on both informational and physical levels leading to
diverse possibilities of dynamic forms.

The main contribution of the paper is to introduce VMC as a
novel distributed generative model for self-organized growth of
structures and evolution of its parameters in a set of example im-
plementations. For the physical realization of a system growing by
VMC, we have used a growing simulated modular robotic struc-
ture based on a physical modular robot. The structure is subject
to physical forces such as gravity, elasticity, and environmental
disturbances. The parameters of the VMC controllers are evolved
for different objectives and the effects of various parameters of the
algorithm are investigated based on the evolved controllers.

2 PLANTS: COMPETITION FOR VESSELS
Vascular strands transport water and minerals from roots, and sug-
ars produced at the leaves to all over a plant. The vascular structure
of a plant is dynamic as the vessels in different branches are rein-
forced or degenerated over time based on their status. Research
in plant physiology [21, 24] suggests that different branches of
a plant compete for more vessels. For example, experiments [21]
with two-shoot pea seedlings, demonstrate that casting shadow on
previously equally-placed shoots, e.g., with equal access to light,
causes the decrease and finally stopping of the shaded shoot while
the other shoot grows faster and becomes dominant (see Fig. 1).
This dominance can be reversed by restraining the dominant shoot
that is located in light.

A hormone called auxin is produced at the tips of plants and
flows via plant vessels towards the roots. Auxin production is influ-
enced by local conditions at the tips (e.g., light access). One effect
of auxin is to make the bundles of unspecialized stem cells, called
cambium cells, which are located near the vascular tissues to trans-
form into vessels. This is especially interesting considering the fact
that limited common resources (e.g., water) need to be distributed
between different branches of a plant via their vessels. More flow of
auxin at a branch leads to more vessels, and thus more transporta-
tion of the common resources to the branch. More resource means
more growth and perhaps positioning of the branch’s tip at even
better locations making a positive feedback loop. On the other hand,
as common resources are limited for a plant, the distribution of
limited resource between all branches creates a negative feedback
pushing towards homeostasis of the plant.

3 THE ALGORITHM: VASCULAR
MORPHOGENESIS CONTROLLER

By taking inspiration from the competition between branches of
a plant for more vessels and consequently more resources, the
Vascular Morphogenesis Controller (VMC) algorithm is designed.
The idea is to let the growable parts of a structure compete for a
common resource of growth via a network of pathways that are
dynamic based on interactions and local conditions of the branches.
For that, VMC is defined as an acyclic directed graph (tree) that is
distributed over the physical growing structure (see Fig. 2). Initially,
the graph consists of a root node and a number of potentially
growable nodes attached to the root making the initial leaves of the
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(a) (b)

Figure 1: If one of the two equal branches (a) is in a compar-
atively preferable environmental conditions (e.g., gets more
light), it develops more vascular tissues and grows more vig-
orously (b).

graph. Growth can only happen at the leaves of the graph. Each leaf
assesses local conditions and accordingly produces a value, namely
Successin (S) in analogy to auxin in plants. The Successin produced
at the leaves flows back to the root and on its way, it regulates the
vascular pathways of resource (V) - in analogy to plant vessels. The
pathways are then used to distribute a limited resource (R) between
the leaves. The limited resource is initiated at the root and flows
towards the leaves being split at every branching point according
to the thickness of the vascular pathways. The leaves that gain
more share of the resource are more motivated to grow. When a
leaf grows, new leaves are generated as its children, and hence the
old leaf turns into an internal node of the graph.

A VMC includes a set of parameters that influence its dynamics.
At the leaves, a set of parameters along with the sensor values de-
termine the rate of Successin production. The amount of Successins
can be altered in their way from the leaves to the root, based on a
set of parameters and the sensor values at the internal nodes. The
regulation of the vascular pathways at the nodes is based on the
value of Successin passing the node as well as a set of parameters.
The parameters of the algorithm are identical for all the nodes and
can be subject to optimization (e.g., evolutionary algorithms as in
here) in respect to given objectives for the growing structure.

Every node of VMC runs independently and updates its state
variables in parallel to other nodes. The dynamics of the variables,
i.e., the production of Successin at the leaves and the Successin
flow at the internal nodes, the thickness regulation of the vascular
pathways, and the distribution of the common limited resource are
summarized in Fig. 3.

Successin Si is produced at a leaf i based on the local sensor
values and parameters of the algorithm as follows:

Si := ωconst +
∑

s ∈sensors
ωs · Is (1)

where ωconst is a parameter representing the production rate of
Successin at the leaf independent of the sensor inputs. Is is the
input from sensor s and ωs is a parameter determining the weight
associated with the input s .

The Successin flows towards the root. The value of S at the
internal node i is updated based on the sum of the Successin values

arriving from all the children of the node, local sensors, and constant
parameters:

Si := д(ρconst +
∑

s ∈sensors
ρs · Is ) ·

∑
b ∈branches

Sb (2)

where in the current implementation д(x ) is a sigmoid function
mapping the input to the range of (0, 1). The ρconst and ρs are
transfer rates influencing the rate of reduction in the Successin
flow passing a node. ρconst is an independent rate and ρs is the
rate associated with a sensor input s . The values of the parameters
in this equation contribute to the effect of the distance from the
root to the share of the resource reaching the leaves (recall that
the values of S passing the nodes adjust the thickness of vessels (V )
and consequently influence the distribution of the limited resource
between the leaves).

The following equation represents how a vascular pathwayVi is
adjusted every time step based on the current value of the Successin
passing through it:

Vi :=



min(Si , (1 − c ) ·Vi + β + α · (Si −Vi )) if Si ≥ Vi

max (Si , (1 − c ) ·Vi ) if Si < Vi
(3)

where c is a constant decay rate of the vessels, β is the constant
addition rate, and α is the factor of adjustment. The equation states
that if the current value of Si is more than the Vi , Vi is likely to
increase (depending on the values of the parameters c , β , and α )
up to the value of Si . Otherwise, Vi decreases by a constant decay
rate down to the value of Si . Note that the parameter values in this
equation influence the competition between branches by changing
the significance of difference in S of different branches.

Finally, the limited common resource initiates at the root node
and flows towards the leaves. The value is constant at the root.
The resource reaching a nodem (Rm ) is simply divided between its
children based on the current value of their vessels:

Ri := Rm ·
Vi∑

b ∈children Vb
(4)

where Ri is the resource value at the child i of the node m, and
children is the set of all children of the node (See Fig. 3 for a sum-
mary).

4 A MODULAR ROBOTIC IMPLEMENTATION
OF VMC

As mentioned in the previous section, growth happens at the leaves
of the VMC graph. When a leaf grows, it turns into an internal node
with new leaves attached to it as its children. The new leaves then
compete for the resource with all the other leaves in the VMC in
order to get their chance to grow. In a physical system, for example,
in a growable modular robot that is controlled by VMC, a leaf
node is associated with every extension point of every module
where new modules can potentially be added. When a particular
leaf is supposed to grow, a new module is attached to the extension
point associated with that leaf. The new module brings its own
extension points and hence new leaves are added to the graph as
the children of the previous leaf that now has become an internal
node. The number of the new leaves is a feature of the modules.
For example, in a homogenous modular robot with two extension
points, adding a new module to the structure means adding two
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Figure 2: A VMC as a whole is an acyclic directed graph that is distributed on the physical growing structure. The leaves of the
graph are the potential places for growth. The leaves produce Successin (S) that flows back towards the root and on its way
regulates the thickness of the vessels (V). The vessels are pathways that transport the limited resource (R) from the root to the
leaves. The more a leaf gets the resource, the more it is motivated to grow. Sensors and constant parameters of the algorithm
contribute to the production and flow of the Ss and regulation of the Vs at every node.

Figure 3: Dynamics of Successin flows, vessel thickness, and resource flows.

more leaves (each associated to one of the extension points) to the
graph as the children of a previous leaf.

Here we are interested to use VMC to drive the morphology
of a growing structure in presence of some physical effects such
as gravity and elasticity. For that, we have built a simple modular
robot where extending its morphology is possible during run time.

Unlike a biological organism, our modular robot cannot grow au-
tonomously and the growth process is sequential (one module at
a time). The growth is achieved by the help of a human operator
who follows the suggestions of the distributed controller running
on the modules of the structure.
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4.1 Design of the Modular Robot
The designed modular robot is built based on a small mobile ro-
bot called Thymio [15] that is available off-the-shelf (Fig. 4a). We
have connected several Thymios to each other to build the single
modules of our modular robot (Fig. 5). The Thymios are connected
in a way that their local communication is still possible. The built
modules are to some extent flexible and elastic due to the usage of
rubber bands and zip-ties for keeping together the rigid parts of the
modules which are basically the Thymios (please see the attached
video for an impression of the physical modules1). Two types of
modules are built: non-branching and branching modules. Fig. 5
represents a module of each type both in physical and in simulated
versions. The elasticity of the modules and their bent shapes makes
the structure building more challenging and closer to real world.
Fig. 4b shows an example structure built out of non-branching
modules growing against gravity. In a branching module, the two
upper Thymios can communicate with the bottom robot (and vice
versa) via Infra-Red (IR) sensors. Each Thymio robot contains an
accelerometer that is used for sensing the orientation of the module
against the vector of gravity.

In this work, we have mainly used the branching modules in
simulation. A simplified physics-based 2-dimensional simulation
is designed based on the physical robot and considers gravity and
elasticity of the modules due to the use of rubber bands. It allows
the modules to bend to some extent and the structure is prone to
collapse when the center of gravity is sufficiently far from the base.
The local communication between the modules is constrained in
the simulation in order to emulate the constraints in the physical
robot. The simulation is developed in the Processing framework2
with Box2D physics engine3.

(a) Thymio robot in normal
use

(b) A growing structure

Figure 4: A Thymio robot and an example of a growing struc-
ture made out of non-branching modules

4.2 Implementation of VMC in the Robot
The growth of the robot starts from a base module that is a non-
branching module fixed to the ground making a tilted flexible start-
ing point for the growing structure. All the other modules of the
1https://youtu.be/tAj_uHk9oNg
2https://processing.org
3http://box2d.org/

(a) A simulated and a physical non-branching
module

(b) A simulated and a physical branching module

Figure 5: Single modules

robot are branching modules. Growth in this structure means at-
taching a new branching module to a potential extension point.
Every branching module has two extension points (two Thymios
on the upper part of the module) and a point of attachment (Thymio
on the bottom).

As the base is non-branching, the VMC of this structure initially
contains a root and its single child (a leaf). The root constantly
produces a fixed resource value of 1 unit that is distributed between
the leaves via the connections. At every time step, the modules that
contain the leaves show to human operator, an indication of their
share of resource. The human attaches a new module to the leaf
that indicates the highest resource. In simulation, the process of
adding a new module is done automatically and regularly at every
150 time steps.

The accelerometers at the leaves are used to perceive the vector
of gravity relative to the nodes. The magnitude of this vector is
used as the local sensor input at the leaves and is available for
influencing the production of Successin. In addition to the vector
of gravity, the modules can perceive the light intensity. No sensors
are used to perceive the presence of obstacles (e.g., other modules
or the ground) by the modules. Hence, the VMC leaves are not
aware of the presence of other leaves or the ground even if they
are facing them. If the robot intends to grow at a leaf and fails due
to the presence of obstacles, the failing leaf goes to a non-growable
mode and will not produce Successin anymore for the rest of the
experiment.

4.3 Evolving the parameters
VMC is implemented here to grow a modular robot in different
setups and objectives. To evolve the VMC parameters for each
setup, a genetic algorithm is used. The population size of the ge-
netic algorithm in all the experiments is 20 and the populations
are evolved for 24 generations. The experiments are repeated for
20 independent runs in every setup. Elitism of one genome and
a crossover rate of 20% is implemented. All the genomes (except
the elite) are mutated with a stepsize ∼ N (0, 0.2). A genome is a
set of VMC parameters. The length of the genome depends on the
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number of the sensor types used for the VMC in every particular
setup. By using the light sensor in both leaves and the internal
nodes, and using the accelerometer of the modules (for sensing
the angle of gravity) at the leaves, the genome would look like:
(ωconst ,ωacc ,ωl iдht , ρconst , ρl iдht , c,α , β ) (see Section 3 for the
description of the parameters). The genomes are randomly initial-
ized between [−1, 1) for the sensor-related parameters and between
[0, 1) for the others.

For evaluating the fitness, each genome is used to parameterize
VMC to grow a structure in a given setup. At the end of a run,
the structure is evaluated based on the given objective function
according to the setup. Since the setups are noisy due to the physics
and the additional randomly imposed force to the structures in some
of the experiments, each genome is evaluated in three independent
runs and the fitness is the minimum of the three evaluations.

5 EXPERIMENTS: GROWING IN DIFFERENT
CONDITIONS

In the first set of experiments, VMC is used to grow a robot with
10 modules to become as tall as possible against gravity. An im-
pulse force is imposed to the base module randomly from the left
or the right side of the module. Considering the flexibility of the
modules and the effect of gravity, the structures might collapse
during the growth ending up to (even long) structures which are
fallen onto the ground and therefore are not considered tall against
gravity, thus not meeting the objective of experiment. We evolved
the system in two different setups: a low impulse force and a high
impulse force. The strength of impulse in the latter setup is three
times as large as in the former setup and thus the structures in
the latter setup are more prone to collapse. In this experiment,
the accelerometer sensors at the leaves are used. The fitness is
computed as the height of the highest module of the robot at the
end of the experiment. Fig. 6a and 6b show the structures devel-
oped by the best genomes evolved in each setup (see a video here:
https://youtu.be/xBEIwFixtJs). As shown in the figure, the mor-
phologies are different in each setup. To investigate the difference,
we developed two robots each in one of the two environments
and positioned them both in the harsher environment (high im-
pulse setup) for a while without any further growth. The result
was the collapse of the robot developed in the calmer setup, while
the robot from the harsher setup stayed upright until the end of
the experiment, showing a higher stability. Fig. 7a and 7b show
the fitness trajectory of the best genomes accumulated from all 20
evolutionary runs.

In the second experiment, we evolved VMC for growing a bushy
robot. For that, the fitness is computed as the number of modules
with no children (i.e., both extension points of the module are free).
Fig. 6c shows the resulted morphology in this setup. The grey leaf
in the figure indicates that the robot has tried to grow at that leaf
but it has failed due to the collision with ground. Finding the VMC
parameters for this setup seems to be easy for evolution (many
possible solutions) such that the solution is found already in the
first couple of generations (not shown).

In order to get a better understanding of the effect of each of the
VMCparameters in the finalmorphology of the robot, the parameter
sets with the highest fitness in the three above setups are collected

from the several runs and represented in Fig. 8. The value range of
parameter α (adjustment factor of V ), and parameter c (decay rate
of V ) are narrow for all the setups. The highest variation between
different setups can be seen in the values of ωs and ωconst that
deal with production of S at the leaves (respectively, regarding
and regardless of the sensor inputs), and also ρ which is related
to the transfer rate of S from a node to its parent. The ωconst for
a bushy morphology is narrow and close to zero, and ωs for the
same morphology is always negative leading to no production of
flow at the leaves. The range of the parameter ωconst is broad for
both of the tall morphologies. The value of the parameter ρ is very
close to 1 for the tall morphology in the low impulse environment,
meaning that (almost) all of the S is transferred from each node to
its parent which implicitly increases the effect of the S generated
at the leaves.

Based on the evolved parameters in the previous experiments
and our gained understanding of the effects of different parameters,
we manually parameterized the VMC for a special setup. In this
setup, in addition to the accelerometer and light sensors at the
leaves, the light sensors are also used at the junctions. The aim
here is to use the same set of parameters in environments with
different light conditions and the robot is supposed to grow bushy
in high intensity of light, and to grow tall in low intensity of light
(shadow). For that, we set a ρl iдht to a negative value such that the
high intensity of light reduces the transfer rate of S between the
modules, thus more bushy structures emerge in light. On the other
hand, we set theωl iдht higher thanωacc such that the S production
is more sensitive to light than to the angle of gravity. Thus, the
parts of the structure that are placed in light are more likely to grow
than the parts in shadow. The parameters are chosen as follows:
(ωconst = 0.01,ωacc = 0.6,ωl iдht = 1, ρconst = 0.9, ρl iдht =
−0.5,α = 1, c = 0.25, β = 0.2). Fig. 6d shows the result of growing
a robot controlled by the same parameters in light, shadow, and
half-shadow environments.

In the final experiment, we evolved VMC parameters with the
aim of growing a robot in a layered environment such that the struc-
ture gets the highest levels of light. The environment consists of sev-
eral obstacles in different layers. The highest layer has themaximum
intensity of light (say 1 unit). With every layer down, and below
every obstacle, the light intensity decreases by 0.1 units. The inten-
sity of light is constant all over each block and the nodes are only
capable of sensing the local light (not direction). Fig. 6e shows the
environment and the robot developed by the best evolved VMC in
this environment (see a video here: https://youtu.be/dSkjohr5Nqs).
The leaves use both the accelerometer and the light sensors. In or-
der to evaluate the fitness, the robot is developed up to 80 modules
and the fitness is computed as the total sum of the light intensity
sensed by all the nodes. Fig. 7c shows the fitness trajectory of the
best genomes accumulated from all the runs.

6 CONCLUSION
In this paper a novel distributed morphogenesis controller, called
Vascular Morphogenesis Controller (VMC), is proposed. The con-
troller is inspired from the vessel dynamics and branch competition
in plants and is used for driving the morphology of artificial struc-
tures. The algorithm is successfully implemented in a growing
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(a) growing tall in a calm environ-
ment

(b) growing tall in a harsh envi-
ronment

(c) growing bushy

(d) identical parameter set grows the structure differently in dif-
ferent light setups

(e) finding the brightest layer in a layered environment

Figure 6: Growing the structure in different setups. The gradients of red/violet to black indicate the resource passing modules.

modular robot in different setups and the evolved parameters are
investigated regarding the effects of each parameter on the mor-
phology of developed structures.

The VMC works based on the distribution of a limited common
resource between competing growable parts of a developing struc-
ture. The morphology of the structure is guided by the negative
and positive feedback loops in the dynamic system determining the
amount of resource that reaches every growable part. In turn, the
feedback loops change due to the changes in morphology yielding
a morphogenetic cascade of growth. The concept of dissipating
quantities through a system, that is utilized in VMC, is compara-
tively similar to Turing’s reaction-diffusion models [25, 31] since
both models use (more or less) conserved quantities. Yet, the dissi-
pation in reaction-diffusion models is isotropic while it is vascular
in VMC and the vessels are dynamic. This allows for more complex
structuring within the system and higher adaptivity in response to
sensory inputs and externally imposed changes to physical body.

The VMC does not make assumptions about the physical host
where the actual development of the morphology occurs. This

separation between the information and physical levels makes the
controller usable for various types of systems. For example, it can be
implemented in heterogeneous modular robots, loosely connected
structures, or even swarms of autonomous robots. In the future,
VMC can be extended for using several roots providing the growth
resource, spatially heterogeneous parametrization of the controller
and online adaptation of parameters in the structure.
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