
EU-H2020 FET grant agreement no. 640959 — flora robotica

Horizon 2020

Societies of Symbiotic Robot-Plant Bio-Hybrids
as Social Architectural Artifacts

Deliverable D1.4
Evaluation of the robotic symbiont

Date of preparation: 2019/03/31 Revision: 1

Start date of project: 2015/04/01 Duration: 48 months

Project coordinator: UzL Classification: public

Partners:
lead: ITU contribution: CYB, CITA, UzL

Project website: http://florarobotica.eu/

H2020-FETPROACT-2014

Deliverable D1.4 Page 1 of 66

http://florarobotica.eu/

EU-H2020 FET grant agreement no. 640959 — flora robotica

DELIVERABLE SUMMARY SHEET

Grant agreement number: 640959

Project acronym: flora robotica

Title: Societies of Symbiotic Robot-Plant Bio-Hybrids as Social Archi-
tectural Artifacts

Deliverable No: Deliverable D1.4

Due date: M48

Delivery date: 2019/03/31

Name: Evaluation of the robotic symbiont

Description: This deliverable provides an overview of our achievements to com-
plete the objectives of WP1: (1) the mechatronic basis for flora
robotica; (2) Interaction mechanisms between the robotic and bio-
logical element of flora robotica; (3) Software abstraction that al-
lows e�cient programming and experimentation with flora robot-
ica. To this end we cover braiding of robotic symbionts, shaping
and control of the robotic symbionts, the Measurement Unit (MU)
for obtaining sensor data from plants, and provide a software in-
terface for obtaining and analyzing this data. Finally, we present
our robotic nodes for controlling the growth of plants. Overall,
we conclude that we have reached the objectives we set out to
achieve at the beginning of the project.

Partners owning: ITU

Partners contributed: CYB, CITA, UzL

Made available to: public

Page 2 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Contents

1 Introduction: Overview of robotic symbiont 5

2 Producing Braided Structures 7

2.1 The braiding machine . 7
2.1.1 General functionality of modules . 7
2.1.2 Mechanics . 7
2.1.3 Electronics . 8
2.1.4 Developments . 8

2.2 Braiding with the machine: a theoretical view . 9
2.2.1 Determining the sequence of interactions 12
2.2.2 Avoiding collisions between strands . 13
2.2.3 Conclusion – theoretical view . 19

2.3 From high-level model to braiding instructions . 20
2.3.1 Braid machine constraints revisited . 20
2.3.2 Braids - from matrix . 22
2.3.3 Braids - from graphs . 26
2.3.4 Braid simulation . 27
2.3.5 Conclusion – braiding instructions . 27

2.4 Conclusion . 27

3 Shaping of Braided Structures 29

3.1 Distributed actuation . 29
3.2 Expansion and contraction with twisted fibers . 30
3.3 Distributed control of braided structures . 33

3.3.1 Motivation and assumptions . 33
3.3.2 Simulated environment . 34

3.4 Conclusion . 36

4 Sensing Plants 37

4.1 Software overview . 37
4.2 Outdoor setup with the phytosensor . 38
4.3 Phytoactuation: robot arm setup . 39

4.3.1 Phytoactuation: event-driven Petri nets . 42
4.4 Production of phytosensors for tests, evaluations, certification and demonstrations . 45
4.5 Hardware exploitation: EMC tests and certification 45
4.6 Operating phytosensor: interactions with users via color indication 46
4.7 Conclusion . 46

5 Plant Shaping 52

5.1 Verification experiments of single plant decisions . 55
5.2 Final generation of decentralized hardware . 57

5.2.1 Primary robot nodes for growth attraction 57
5.2.2 Extension system for growth repelling . 61

5.3 Conclusion . 63

Deliverable D1.4 Page 3 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

6 Conclusion 64

References 66

Page 4 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

1 Introduction: Overview of robotic symbiont

This deliverable is the last in a series of three reporting on the robotic symbiont. In D1.1
we reported on our exploration work regarding a suitable technological basis for the robotic
symbiont. At the start of the project it was anticipated that the robotic symbiont could be
based on the existing LocoKit robot construction system. However, in D1.1 we established that
LocoKit was too limited to work as a robotic symbiont and presented a rather large range of
potential alternative technologies. In D1.2 we had focused our e↵orts and reported on the four
technologies that have become the core technologies of the project. It was the braided robots
together with the braiding machine, which provide the structural basis and actuation. It was the
robotic node used to control plant shaping using light at di↵erent wave-lengths. Finally, it was the
Measure Unit (MU) used to obtain sensor data from plants. Together these technologies provide
a complete basis for a robotic symbiont including structure, robotic action, plant actuation, and
plant sensing. In D1.3 we provided a progress report and in this final deliverable D1.4 we will
provide a final report on these technologies.

In the previous deliverable D1.3 we presented the braiding machine and demonstrated that
it was able to braid a variety of structures by controlling the braid module configuration and the
braid pattern (e.g., cylinders, inter-braided double cylinders, division and merging of substruc-
tures, etc.). The braiding machine overall remains the same, but has seen small, but important
improvements that make it more robust and able to braid with a wider range of materials. A spe-
cific example is that we used the braiding machine to braid columns from wooden strips for the
demonstrator. A key problem of the braiding machine and the braid production work was that
we did not have a way to come from a high-level design of a desired braid to a braid machine
configuration and controller. This challenge has been the focus of the last period. We have
attacked this problem from two directions.

In Sec. 2.2 we report on work where we develop a theoretical basis for the braiding ma-
chine that allows us to verify if a specific controller and braid configuration lead to collisions in
the braiding process. We can view this as a theoretical bottom-up process to understand the
limitations of the braiding machine.

In Sec. 2.3 we report on the other direction where a 3D model designed by an architect
is compiled into a braiding machine configuration and controller. This work represents a key
contribution of this period as we now have the pieces for a tool chain that goes from high-level
3D CAD model to the braided structure (akin to the tool chain in 3d printers where you go from
CAD model to 3D printed model through slicer software to GCode commands to control the
3d printer). Furthermore, we present a simulator for simulating the resulting braid (before it is
produced on the machine).

Once the braids are produced a key aim of the project was to understand how we can actuate
them. In D1.3 we reported on how to do this using wires attached to servo motors. We also
explored an alternative to servo motors in the form of NiTinol Nichrome composite wires. In
Sec. 3.1 we present a third approach where distribution actuation modules are placed on the
braid and control the angle between two strands of the braid and thereby deform the braided
structure. We also report in Sec. 3.2 on preliminary work towards a new braid actuator based on
twisted fibres. Finally, we continue in Sec. 3.3 to demonstrate how controllers for braid shaping
can be evolved in simulation.

In Sec. 4, we report that the Measurement Unit (MU) developed by our SME partner Cy-
bertronica (CYB) has matured further and is now certified and made available as a commercial
product. The product is demonstrated and it is documented how it performs in an outdoor
setting and how the MU as a standalone can be used to control a robot arm directly from sensor
readings from the plant.

Deliverable D1.4 Page 5 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Finally, in Sec. 5 we report on the latest version of the robotic node for shaping plants which
has seen a step-change in performance and drastic reduction in size (half compared to what was
reported in D1.2). We further present a protocol for performing plant-robot experiments.

In summary, we cover all the mechatronic aspects of robot-plant interaction of this project.
The production of braided structures and the underlying understanding of the process is a key
contribution of the project. Another key contribution is the plant shaping work showing exper-
iments with both plants and robots. Also, worth mentioning is that the Measuring Unit has
reached a level of maturity uncommon for research projects. The actuation of braids is still work
in progress as this was only the focus in the last part of the project.

Page 6 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

2 Producing Braided Structures

In this section we introduce the braiding machine, a theoretical investigation of the limitations of
the machine, and the steps required to go from a high-level 3D model to the robot configuration
and controller that can produce this braid.

2.1 The braiding machine

This section is included to provide an overview of the braiding machine. This is provided for
completeness, but is a summary of the corresponding section in D1.3. Hence, if the reader is
aware of the general principles of the braiding machine the reader can skip to Section 2.1.4.

2.1.1. General functionality of modules

The functionality of the braiding machine is to transport carriers of filament in interweaving
patterns to produce continuous reciprocal 2D or 3D braid structures. For the machine to be
both cost-e↵ective and versatile reconfiguration was essential as it allows for a variety of braid
patterns from a minimum of hardware modules. The control software is designed for low level
control of the microprocessor in the machine as well as for the high level control of reconfiguration,
testing and simulation of carrier transportation.

Figure 1: Braiding machine: reconfigurable hardware modules

2.1.2. Mechanics

To move carriers in various crossing transportation routes, four di↵erent types of reconfigurable
modules were designed see Fig. 1. The (1) drivers of the braiding machine are designed to build
tracks for the transportation routes while (2) junctions are routing the (3) carriers on their way
through the machine. (4) Borders prevent the carriers from falling o↵ the open edges of the
drivers. Transportation routes can be designed by assembling octagonal driver modules into spe-
cific configurations. The number of possible configurations grow exponentially with the number
of modules available. Drivers are equipped with a rotating sprocket on top transferring torsion

Deliverable D1.4 Page 7 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

between drivers. Hence, they turn clockwise and counter clockwise respectively. This sprocket
design is combined with eight slots as seats for carriers to reduce parts, cost and complexity. The
driver baseplate is octagonal allowing it to connect with a straight edge to adjacent modules.
On top of this baseplate two circular plates of di↵erent diameter are fixed. The cross-section of
these plates make up one half of the concave rail while adjacent rim, junction and driver modules
make up the other half. Junctions brace and fasten the driver modules, and the servo motor
on its bottom actuates the top switching tooth to route carriers passing by. All servos in the
junctions are controlled from a 16-channel 12-bit PWM/servo driver through I2C interface to a
micro controller using an Atmega2560 processor.

2.1.3. Electronics

The Atmega2560 micro controller board acts as low level timer and is connected to a number
of integrated circuits. For a schematic overview see Fig. 2. (1) The aforementioned servo driver
controlling all junctions. (2) An encoder with 6000 steps/revolution connected on one of the
driver sprockets tracks position of the rotating sprockets constantly. We use a 12-bit encoder,
the angle of rotation is represented by a number between 0 and 2048 (211). Therefore, the reading
is accurate to about 0.09�. (3) A Rampsboard v.1.4 with up to 5 stepper motor drivers control
up to 5 Nema 17 stepper motors which actuates the rotation of sprockets. Sprockets are directly
mounted on the stepper motor axel to simplify design, ensure easy control of torque and manual
overrule and to reduce damage at jamming by avoiding additional gears. A computer running
the control software sends commands over the serial port to the microcontroller. The commands
bu↵er to the internal memory of the microcontroller, which in turn executes the servo commands
in correlation with sprocket position.

Figure 2: Direction of messages passed between software, middleware, and hardware.

2.1.4. Developments

During this reporting period, we have made a number of small improvements to the braiding
machine. The most general improvement was to deal with the misalignment and bending of the
switches when braiding with sti↵er materials. In order to mitigate it we changed the thickness
of the switch headers and arms from 1mm to 2 mm. Furthermore, we increased their rotational
range which allows us to set the range in firmware depending on the sti↵ness of the material,
that replaces a tedious mechanical configuration step with every new braid with sti↵ material.
In conclusion, the maturity of the braiding machine has increased in the last period and small
modifications has been made to increase its robustness and ability to braid with a variety of
materials.

Page 8 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

2.2 Braiding with the machine: a theoretical view

A braid is a complex structure (pattern) formed by interlacing three or more strands of flexible
material [3]. In principle, all strands of a braid are functionally equivalent with respect to
interlacing pattern through the others. The minimum required number of strands for a braid
is three that forms a flat and solid structure, for example, a rope or braided hair. However, to
braid more complex structures, larger number of strands are needed. For instance, the minimum
number of strands to form a tubular braid is four. A wide branch of research in mathematics,
called braid theory, studies the topological concept of braids [1, 2] by defining braid groups and
configuration spaces. In braid theory, the complex interlacing patterns of braided structures can
be described as a sequence of single braiding operations on pairs of strands one at a time.

To produce a braid, each strand follows a certain pattern of interlacing interactions with other
strands. The interactions are the acts of one strand passing under or over another strand. The
interlacing pattern of interactions usually repeat for several rounds or for the whole braid. The
patterns of the under/over passes determine some of the mechanical properties and the shape of
the braid. A change in the pattern leads to a change in the shape or properties of the braided
structure.

(a) 3-strands braid (b) movement

pattern of

strands

(c) configuration consisting of 2 oppositely ro-

tating discs to achieve the movements

Figure 3: (a) An example 3-strand braid, (b) the movements of the strands necessary for produ-
cing the braid, and (c) a mechanism for producing the movements of the strands to achieve the
barid.

The interaction pattern can be achieved by using combinations of clockwise and counter
clockwise rotational moves of the strands in relation to each other. Fig. 3 shows a simple 3-
strands braid, the rotational moves of the strands, and a mechanism to achieve the pattern of
the moves. As demonstrated in the figure, the movement pattern can be produced by using
a configuration of two discs rotating in opposite directions. The discs guide the movement of
the strands and exchange the strands between each other. The strands in this configuration
are distanced (semi-)equally on the movement path and are exchanged between the discs at the
crossings.

Deliverable D1.4 Page 9 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 4: Examples pairs of opposite paths for producing tubular braids.

More complex braids can be constructed by using slightly di↵erent strategies. In most cases,
several (e.g., two) groups of strands with di↵erent paths of movement are used to make the
pattern. As an example, the patterns generated by a maypole dance movement of strands, can
produce a tubular braid which in braiding terminology is called a tubular biaxial overbraid on a
mandrel (i.e., the pole). In the maypole dance movement, two groups of strands move in oppos-
ite directions around a mandrel while alternating between the inner and outer circumferences.
Similar to the 3-strands braids, the opposite directions and the alternation can be achieved by
using oppositely rotating discs. The di↵erence is that, unlike the 3-strands scenario where all
the strands pass the whole path consisting of both clockwise and counter clockwise directions,
here, every strand passes through one of the two paths which goes either clockwise or counter
clockwise. Fig. 4 shows several example pairs of paths for two groups of strands.

The interlacing pattern of a braid is the result of the movement paths of the strands and the
distance between the strands within their paths. Fig. 5 shows two di↵erent examples of strand
configurations in the same pair of paths. The resulting braid in both examples is a tube while
in one example (a, c), the braid is consisting of a regular pattern and in the other example (b,
d), the braid is consisting of a diamond pattern. The movement paths for both examples can
be realized by using 8 oppositely rotating discs (as in Fig. 4 left). The di↵erent patterns are
achieved by using di↵erent number of strands and their positioning in relation to other strands
on the discs along the di↵erent paths.

In a configuration with several groups of strands moving in di↵erent paths, every strand may
or may not interact with the strands of other groups, but it never interacts with the strands of
its own group. If we can assure that all the strands within each path are similar in terms of their
interactions with the strands of other paths, the prediction or planning of interlacing patterns in
a particular configuration of discs will be reduced to only a single strand for each path.

To achieve that, we restrict ourselves to a limited space of setups that meet this requirement
by making a number of assumptions and rules for positioning the strands. In all the configurations
discussed in the following, all discs rotate with the same speed and every two discs that are next
to each other rotate in opposite directions. All the paths of the strands are closed loops realized
by the discs. We assume that the strands are planned for producing rather dense patterns where
the only relevant under/over interactions occur when two strands are at the same disc. Note that,
in a general case and with a very sparse setup of strands, one can achieve interactions between
strands at far apart discs, but that is not the case here. We also assume that the interlacing
patterns are repeated and identical for all the strands in a path. In the following, first we discuss
the procedure of determining the sequence of interactions and thus the interlacing pattern of

Page 10 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

a) pair of paths with 16 strands b) pair of paths with 8 strands

c) regular pattern (setup shown in a) d) diamond pattern (setup shown in b)

Figure 5: Example strand setups (a, b) in a pair of paths to braid a tubular structure. The paths
are realizable by 8 discs in a circular configuration. The braid pattern of the tubes are di↵erent
for the di↵erent strand setups (c, d).

Deliverable D1.4 Page 11 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) (b)

Figure 6: a) An example pair of paths (a yellow and a blue path) crossing and splitting each
other in a single disc making a pair of local segments. b) The strands of a blue path that interact
with a yellow strand on an under segment of the yellow path over time. The yellow circle
represents the yellow strand. The blue circles represent the strands that eventually interact with
the yellow strand during the period of time its passing the yellow segment. Since the strands on
the two paths move with the same speed in opposite directions, the number of the blue strands
interacting with the yellow strand correlates with the total length of the yellow segment and its
opposite blue segment.

a braid. Then we introduce a set of rules to follow for positioning the strands such that the
assumptions for determining the interlacing pattern are realized.

2.2.1. Determining the sequence of interactions

The interlacing pattern can be predicted from the disc configuration and positioning of the
strands on di↵erent paths. For that, the sequence of under/over interactions for a strand of
every path is determined. To determine the interaction sequence in a dense setup, local segments
are defined. Every pair of paths may cross each other at some points and split each other into
several segments. The paths may also overlap with each other. A local segment is defined as a
segment of a path that extends only within a single disc and is not overlapping into the other
path of the pair (see Fig. 6(a) for an example). In every example of Fig. 4, the paths split each
other into several segments and all the segments are local (extending only in one disc). For
example, in the 8-disc configuration of Fig. 4 (left) each path contains eight local segments.

In a sequence of discs, the local segments can be grouped into under segments and over
segments. For instance, in the examples of Fig. 4, the segments belonging to the outer circum-
ferences can be called over segments while the inner segments are called under segments. The
naming is rather arbitrary because the under and over are relative to the perspective of the
observer. However, as long as the naming is used consistently for a sequence of discs, it can be
helpful for distinguishing between the contribution of di↵erent segments to the braid.

To determine the interlacing pattern, the number of interactions between the strands of
di↵erent paths are computed for every pair of local segments locating on the same disc. For a
particular strand in a segment of a pair, it takes a period of time until it travels the segment.
The number of interactions of the strand is the number of strands on the other path passing the
opposite segment during this period. Since the strands in the two paths move with the same
speed, but in opposite directions, the number of strands passing by the opposite segment during
the period correlates with the total length of the two segments of the pair. Fig. 6(b) illustrates

Page 12 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

how to count interactions. The number of interactions depends on the total length of the two
segments and the density of the strands on the opposite path:

I = (O + U) · �

where I is the number of interactions of the strand, O and U are the lengths of the two
segments in a pair, and � is the density of strands on the opposite path. Whether the interactions
of the strands in a segment are under or over interactions depends on the type of the segment
(under segment or over segment). The interlacing pattern for the strands of each path is the
sequence of interactions computed for all the local segments along the path.

Example – analyzing interlacing pattern in an 8-disc configuration The interlacing
pattern of setups in Figs. 5a and b can be determined as follows. Both setups share the circular
8-disc configuration. Such a configuration demands that the relation between the length of the
under segments to the over segments is 3 to 5. For clarity of the presentation, the length of the
disc circumferences is represented by C = 8l (8 = 3 + 5) for a given value l. In both setups of
the figure, four groups of similar local segments can be detected and therefore, four interaction
numbers can be computed: interactions of under segments of the clockwise path (Icw,u), over
segments of the clockwise path (Icw,o), under segments of the counter clockwise (Iccw,u), and
over segments of the counter clockwise path (Iccw,o). By computing the interactions of a strand
in one segment of each group, we can reconstruct the interlacing pattern of the resulting tubular
braid. With C = 8l, the distances between the strands of the clockwise and counter clockwise
paths for the first setup (Fig. 5a) are correspondingly A = 4l and B = 4l and for the second setup
(Fig. 5b) are correspondingly A = 8l and B = 8l. In both examples, the lengths of the under
and over segments are U = 3l and O = 5l correspondingly. The interactions are computed as
I = (O + U)· 1D , whereD is the distance between the strands leading to a density of 1

D . Therefore,
in the setup of Fig. 5a, the interactions are Icw,u = Icw,o = Iccw,u = lccw,o = 2, meaning that
regardless of the path, every strand passes two times in a row over and then two times in a row
under the strands of the opposite path. Since there are 8 strands on both paths, the strands
of both paths repeat the pattern twice until they meet the same opposite strand again. In the
example of Fig. 5b, there is one interaction for all Icw,u = Icw,o = Iccw,u = Iccw,o = 1, meaning
that every strand passes once under and once over the strands of the opposite path and the
pattern repeats.

With the same logic, we can plan a set of other interlacing patterns. For example, in the same
disc configuration as above, one can plan to produce a pattern with the clockwise strands that
passes once over and once under while the strands of the counterclockwise path pass twice over
and twice under (i.e., Icw,u = Icw,o = 1, Iccw,u = Iccw,o = 2). The required densities for such
interlacing pattern are �cw = 1/4 and �ccw = 1/8, meaning that the strands should be distanced
with A = 4l and B = 8l.

2.2.2. Avoiding collisions between strands

In this section, we introduce a number of rules to ensure that the positioning of strands on
their paths produce repeated and identical interlacing patterns as described before, and that the
strands of di↵erent paths do not collide with each other. The first requirement for a repeated
and identical sequence of interactions is a constant density of strands along each path. In other
words, the strands need to be equally spaced within their path (rule 1). In addition, to keep
the interactions identical for all the strands of a path, we need to make sure that every strand
interacts with at least one strand of the opposite path during its traversal on every local segment
along its path. To achieve that, we set a maximum allowed value for the distance between

Deliverable D1.4 Page 13 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) 8-disc configuration (b) Numbering of strand holders

Figure 7: Example discs with defined equally spaced positions to hold 8 strands on each disc.
The holders are numbered for both the clockwise and counter clockwise rotating discs. The discs
are organized such that the holders with the same number match each other

consecutive strands in a path. The maximum allowed distance is the minimum length of all the
sums of the neighboring (an under and an over) segments along the path (rule 2).

Example – strand setups in an 8-disc configuration. In the 8-disc configurations of
Fig. 4 (left), with the disc circumference of C = 8l (as discussed in the previous section), the
size of each of the two paths is T = 32l. Let’s assume that for technical reasons, there are 8
positions on the circumference of every disc that can hold a strand. The distance between the
holding positions is l. The discs are arranged such that the holding positions of neighboring
discs match each other and thus the strands can exchange between the holding positions of
di↵erent discs (see Fig. 7 for an illustration). rule 2 requires that the distance between every
two consecutive strands of a path is not more than the minimum of total length of all pairs of
neighboring segments along the path. Since the total length of every two neighboring segments
along each of the two paths in this example is 8l (for 3l and 5l being the lengths of the under
and the over segments), the strands can be apart not more than 8l units (D 8l). Considering
that the length of each path is T = 32l, every path holds at least 4 strands (N � 4). rule 1
requires equal spacing of the strands. Thus, to meet rule 1 (while still fulfilling rule 2), each
path holds N 2 {32, 16, 8, 4} strands with the spacing of D 2 {1l, 2l, 4l, 8l} correspondingly.

Complex configurations with overlapping paths. An example of a more complex disc
configuration is shown in Fig. 8. The configuration can be used for braiding a double tube with
a shared wall between the tubes. To produce one of the tubes, the circular 8-discs configuration
of the previous example can be used. For the second tube, six extra discs can be used along
with four discs that are shared with the 8-disc configuration. The four discs contribute to the
shared wall between the tubes. Fig. 8b demonstrates four paths that are used for producing the
braid. Two of the paths, that is, orange and black, move clockwise and the other two paths,
blue and green, move counter clockwise. Fig. 8 shows the combinations of the four paths. The
top row shows two pairs of paths that produce the tubes, that is, the pair of blue and orange

Page 14 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 8: An example configuration for producing a double tube with a shared wall. The disc
configuration consisting of 14 discs (a). Four paths that produce the two tubes (b). the pairs of
paths for braiding each tube (c, top row), the pairs of paths for braiding the two tubes together
(c, middle row), and the pairs of paths that do not contributing to the braiding (c, bottom row).

paths passing 8 discs and the pair of green and black paths passing 10 discs. The middle row
shows how parts of the paths involved in producing di↵erent tubes cross each other at the four
shared discs to braid the tubes together, that is, the orange crosses the black path and the blue
crosses the green path. Note that at the crossing part, the paths move in opposite directions.
The bottom row shows the paths overlapping with each other. At the overlapping part, the
both paths move in the same direction and thus do not braid their strands. The numbers at
the top-right combination of paths in Fig. 8b represent the size of the segments for the counter
clockwise (green) path. The same sizes apply to the clockwise path.

To set up the strands such that the assumptions for determining the repeated and identical
interlacing pattern are realized, we follow the rules stated before. The first rule (rule 1) requires
an equidistance positioning of the strands on the paths. Thus, the distance for the paths of the
10-disc tube is D10discs 2 {1l, 2l, 4l, 5l, 8l, 10l, 20l, 40l}. rule 2 requires that the upper bound
for the distance of neighboring strands is the minimum of the sums of all pairs of neighboring
segments. From the lengths of segments indicated in Fig. 8b, the rule requires that the distances
are at most D 2l + 3l = 5l. The combination of the two rules leads to the allowed strand
distance of D10discs 2 {1l, 2l, 4l, 5l} and strands number of N10discs 2 {40, 20, 10, 8}. For the
paths of the 8-discs tube, the rules require D8discs 2 {1l, 2l, 4l} and N8discs 2 {32, 16, 8}.

The next consideration is the fact that the paths of the two tubes are overlapping as shown
in the bottom row of Fig. 8b. It means that the discs at the overlapping parts of the paths need

Deliverable D1.4 Page 15 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 9: An example setup with two paths each holding four strands in a 4-disc configuration
and numbered holding positions. The possible collisions at the crossings is avoided by locating
the strands of di↵erent paths in holding positions with di↵erent numbers

to carry the strands of two paths at the same time but the strands should not collide with each
other. Following the previous examples, we assume that there are defined positions for holding
the strands on the circumference of the disc with equal distances of l (Fig. 7). With overlapping
paths, in order to be able to fit the strands of both paths into the holding positions, the greatest
common divisor (gcd) of the distances between the strands need to be more than 1 (rule 3).
Otherwise, at some point, the strands of the di↵erent paths fall into the same holder. To meet
this requirement in the example of Fig. 8, the possible distances for the strands on the two paths
are combinations of D10discs 2 {2l, 4l} and D8discs 2 {2l, 4l} leading to N10discs 2 {20, 10} and
N8discs 2 {16, 8}.

With the defined holding positions and since all the discs are assumed to rotate with the
same speed, another type of collision is also possible. The other collision to be avoided can
happen at the crossings of the paths where the strands are exchanged between the discs. To
solve the problem, we number the strand holders such that always the matching numbers of
the neighboring (oppositely rotating) discs meet (see Fig. 8b). Since the strands are exchanged
between discs at their meeting point, every strand always locates at the holders with identical
numbers. A simple rule to avoid collisions at the crossings is to only allow the strands of pairs
of paths that cross each other (opposite directions) to occupy holders with di↵erent numbers
(rule 4). To be able to make such arrangement of strands on the paths, the same conditions for
avoiding collisions due to overlap need to be met, that is, the gcd of the strand distances of the
paths are more than 1. Fig. 9 represents an example setup that avoids collisions at the crossings
by locating the strands of di↵erent paths at the holding positions with di↵erent numbers.

Page 16 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Summarizing the set of rules for positioning strands. The set of rules described above
ensure that the positioning of strands doesn’t violate the assumptions for determining the re-
peated interlacing patterns of dense setups. The first three rules put constraints on the distances
between the strands in their paths. The last rule specifies where the strands can be positioned
in terms of the possible locations around the discs. The rules are summarized as follows:

rule 1 The neighboring strands in a path are equally spaced. Such a setup is inline with braiding
a repeated pattern.

rule 2 The upper bound for the distance between neighboring strands in a path is the minimum
length of the combinations of sums of the neighboring segments along the path. The rule
ensures that all the local segments of the same type (under or over) along a path participate
in the interactions with the opposite path. It is inline with the assumption of identical
number of interaction within the paths in a dense setup. rule 1 and rule 2 together
ensure that the interactions are repeated and identical for all the strands of each path.

rule 3 For every two paths that overlap or cross each other, the gcd of the distances between
the strands of the two paths need to be more than 1. The rule ensures that at least one
equidistant positioning of strands within the two paths exists that doesn’t lead to a collision
of strands from di↵erent paths.

rule 4 For every two paths that cross each other (opposite directions), strands of di↵erent paths
are only allowed in holding positions with di↵erent numbers (numbering of holding positions
is described before). The rule ensures that the strands do not collide at the crossings along
their way.

Self-crossing paths. For completeness of the discussion, we also consider special type of paths
that make another possibility of collision of carriers. Such paths are called self-crossing where
the path crosses itself at some points. Fig. 10 shows two examples of such paths. Self-crossing
paths are not used often because variations of the same structures can be resulted from replacing
the self-crossing path by sets of shorter paths that make local loops and cross each other.

A self-crossing path puts an additional restriction to the positioning of the carriers to avoid
collisions between the carriers of the same path. In fact, we need to consider the length of the
parts of the path that start and end at the same crossing point. These lengths make a set
of forbidden values, meaning that if the distance between any pair of carriers (not necessarily
consecutive carriers) equals these values, a collision will happen at some point along the process.
A solution is to avoid the spacing of carriers to be the divisors of any of the forbidden values. In
some cases, this can overly limit the possible setups, even to the extent that there is no allowable
setups for the configuration. Another solution that is more practical but not always possible due
to the requirements of the braiding patterns, is to use the previously mentioned rules (rule 1
to rule 4) to compute the ideal distances for equal spacing of the carriers. The next step is to
make modifications to the spacing by moving the carriers a few positions backward or forward
such that the forbidden values do not occur in any place. Depending on the disc configurations,
the ideal desired spacing of carriers, and the forbidden values, it can be a straight forward or a
complicated or even an impossible task. However, even if the modification is possible, the rule 1
requiring equidistance spacing of carriers is violated. Note that the rule 1 was established to
guarantee the equal density of strands of opposing paths in relation to each other such that the
braiding pattern stays identical everywhere. That equal density can be still met with the slightly
out of order positioning, in case the opposing paths are not too dense. This has to be checked by
the designer (user). In addition, one needs to make sure that the other rules of positioning, for

Deliverable D1.4 Page 17 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 10: A path may cross itself

example, rule 4 for using di↵erent slots around the discs in di↵erent paths, are still met after
the modification of spacing.

As an example, consider the configurations of Fig. 10 with two rings of discs (Fig. 10 top) and
three rings of discs (Fig. 10 bottom). If the length of the circumference of the discs is 8 units,
the distance between any pair of carriers (not necessarily consecutive) should be unequal to 32
in the two-ring configuration and unequal to both 32 and 64 in the three-ring configuration.

In the two-ring case with the path of length 64, there is no solution that satisfies all the
rules and avoids distances that are not divisors of 32. Therefore, the only solution is to use the
modification process. We now consider the case of having 8 as the ideal spacing between the
carriers. With equally spacing of carriers (i.e., 8, 8, 8, 8, 8, 8, 8, 8), the sum of every 4th consecutive
distances hits the forbidden value of 32. A solution is to make two groups of 4 consecutive carrier
distances and modify the last values in each group. The resulted spacing sequence is as follows:
8, 8, 8, 7, 8, 8, 8, 9.

Another example is shown in Fig. 10 bottom, where the length of the path is 96 and distances
of 32 and 64 are forbidden. The only equal spacings that are not the divisors of the forbidden
values are D 2 {3, 48, 96} meaning N 2 {32, 2, 1} carriers in the path. Assuming that another
path exists on the same discs but opposite direction, and following rule 1 to rule 4, the only
allowed spacing is D 2 {3} and N 2 {32} carriers.

Another solution would be to use the modification of the spacing. Assuming that the
desired carrier spacing is 8. To avoid the collision of carriers at the self-crossings, the se-
quence of carrier spacing can be modified as follows so the forbidden values do not occur:
8, 8, 8, 7, 8, 8, 8, 7, 8, 8, 8, 10.

Page 18 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

2.2.3. Conclusion – theoretical view

Despite the braiding machine’s conceptual simplicity, its control is non-trivial as discussed above.
From the very start of this work we were challenged by finding collision-free braiding controllers.
We have developed the above rules that allow us to develop controllers that are guaranteed not
to cause collisions. With this concept, we can verify that a provided configuration and and a
controller are e↵ective and do not break the machine.

Deliverable D1.4 Page 19 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) example braiding machine (b) grid layout (c) complex layout

Figure 11: Example braiding machine configurations: (a) physical examples, (b) grid layout, and
(c) complex layout

2.3 From high-level model to braiding instructions

The production of a braid using the described braiding machine requires three preparatory steps:
1) arranging the horngears into a viable configuration; 2) placing carriers within the horngears
in a configuration that will not result in runtime collisions; and 3) specifying when, during
runtime, to switch carrier directions. In combination with the previously reported simulation
environment (D1.3, Sec. 2), the described braiding machine can be used in a bottom-up manner
to explore braided outcomes. However, to achieve the wider architectural objectives within the
flora robotica project, it is crucial to understand how to translate specific braid designs generated
using the methods previously reported (D3.1, Sec. 4), into machine fabrication instructions. This
section reports on our approach to achieve this goal.

2.3.1. Braid machine constraints revisited

The braid machine is based on a modular principle employing eight-sided modular horngears
which can be connected to each other on any edge. The octagonal geometry allows for regular
planar tessellated configurations, as well as more free-form planar configurations (Fig. 11).

Each horngear has eight steps (eight possible carrier positions), and connected horngears
share one step position (Fig. 12a, white labelled positions: 2, 4, 16, 12). All connected horngears
rotate in alternating directions. Between two horngears there is a switch that can alter the
path of a carrier (Fig. 12a, indicated with black labels: 0, 1, 2). The switches are independent
and are the basis for changing the sectional characteristics of the braid over time. A list of
switch states for each switching mechanism (where 0s or 1s indicate carriers would move left
or right) can be used as an input for the machine at each time step (where one time step is
one eigths of a full rotation of the horngears). However, the list of switch states needs to be
carefully sequenced and checked in order to ensure there are no runtime collisions. Therefore, it
is crucial to understand the dynamics between machine layout, carrier starting positions and the
switching logic over time. The movement of the material carriers (Fig. 12b) through the machine
during the simulated fabrication process, can be represented as a sequence of machine positions
(Fig. 12a, white labelled positions). The sequences (the position in xy-plane) and the adding of
height for each time step (z-axis) make it possible to represent the paths of the filaments as three
dimensional curves in space (Fig. 12c). In addition to providing a check on the runtime dynamics,
the simulated curves provide the basis for a further braid relaxation simulation (Fig. 12d).

Page 20 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) Machine (b) Carriers

(c) 3D Paths (d) Braid

Figure 12: Basic layout principle of the octagon-horngear assembly

Deliverable D1.4 Page 21 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 13: Same horngear topology, di↵erent layout geometry

2.3.2. Braids - from matrix

The braid topology can be informed precisely through specifying the interaction (interlacing) of
individual horngear-groups (subsequently horngear neighborhoods) with each other for every time
step (matrix mode) or more intuitively derived from a 3D graph (line mode). The second method
is especially suitable in a spatial design context where quick and iterative design explorations are
necessary and a relation between graph geometry and braid topology is desired. For the matrix
input method, switch states are informed by a numbering system of ‘horngear neighborhoods’
(HN) comprising four horngears. Two neighboring HNs with the same number indicate that the
adjacent horngears of the two neighborhoods will interact with each other (interlace) at the next
time step. The HN numbers are stored in 1-dimensional lists for each time step - with the HNs
ordered in the form of a meander. The ordered meander fixes the machine topology, but the
same topology can have geometric variants (Fig. 13). Having the HNs numbered in the form of
a meander allows changes to the machine layout without changing the topology of the HNs.

The method for determining the interlacing tracks and the carrier positions for a machine
layout from the horngear neighborhood connectivity (HNC) is described in the following example
for the machine topology and the HNC of Fig. 14:

The white and black circles in Fig. 14a represent if horngear neighborhoods - for this specific
time step - interlace with each other or not. Black means they interlace and white means they do
not. This is also reflected in the equal or unequal numbering of the neighborhoods. A machine
with four horngear neighborhoods has 16 horngears (Fig. 14b). 16 horngears have 128 carrier
positions, which, if organised in the matrix shown, share 24 sides. This results in 104 possible
carrier positions in the machine. The rotation direction of the horngears alternate throughout
the system in a checkerboard-like manner (Fig. 14b, arrows). To get the opposing braiding tracks
for the same time step, the pair of horngears rotating in the same direction in each horngear
neighborhood are identified to build the basis for the left- and right-track(s) (Fig. 14c, dashed
lines for right-track(s), continuous lines for left-track(s) - here the four line-pairs in each horngear
neighborhood).

If neighborhoods should interlace with each other the four horngears adjacent to the border
of the two neighborhoods (Fig. 14a, lines with black and white dots) have to be part of the
braiding-tracks which is represented as another set of dashed and continuous lines, placed on the
border of the two neighborhoods (Fig. 14c, here bottom and right neighborhood-border) - rotated
by 90 degree to connect the same rotating directions of the horngears as in the neighborhoods.

Page 22 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) (b) (c)

Figure 14: Determining interlacing tracks and carrier positions from HNC: (a) Numbering system
horngear neighborhood (HN) and connectivity indication (black circles: connected, white circles:
not connected), (b) Horngears and carrier directions, (c) Horngear connection

The result is a zigzag-network of interlacing dashed and continuous lines which reflects which
horngears build the basis for the braiding-tracks. The tracks are found by getting all the closest
edges of the octagons (horngears) around the individual zigzag lines (Fig. 15a, here four: two
dashed, two continuous). The tracks around the continuous lines become left-tracks (Fig. 15)
and the tracks around the dashed lines become right-tracks (Fig. 15c). Together all left- and
all right-tracks have 64 carrier positions each (128 together). The numeric relationship is as
follows: 4 horngear neighborhoods ⇥ 4 horngears ⇥ 8 positions = 128 carrier positions = 64
track positions for the left- and 64 track positions for the right-tracks. Here the opposing small
tracks (Fig. 15b and Fig. 15c, top-left) have 16 positions and the long tracks (Fig. 15b and
Fig. 15c, bottom-right) have 48.

Each track gets populated with carriers for half the amount of its track positions. 32 left-
carriers (8 + 24) and 32 right carriers (8 + 24). The left carriers are o↵set by 1 - which makes
it possible for the carriers from the left-tracks to pass the carriers from the right-tracks during
runtime. Using this logic, every second position in the machine is filled with a carrier and the
positions are always the same for all possible tracks. The carriers all initially start in caridinal
positions in the horngears, that is, top-, bottom-, left- and right positions of the octagonal
modules.

After every second time step all the carriers are in a possible transfer position, making it
possible to change to another horngear neighborhood. Every time the carriers are passing the
top-, bottom-, left- and right positions of the eight-sided horngears, it is possible to transfer
to a new horngear-neighbourhood if there is one connected. This is not always the case as in
the matrix configuration there are edge conditions, and in complex configurations there may be
limited connectivity. Fig. 16a and b show the carrier movements 1 time step apart. Fig. 16c
shows the carrier movements through the machine plotted in time (z-axis). The resulting 3D
paths are used as the basis for a braid simulation/relaxation. In the case shown (Fig. 16c) the
horngear neighborhood connectivity did not change over time. Fig. 17 shows a path plot that
embodies changes of the horngear neighborhood connectivity over time, with the start at the
left, a change occurring at the half-way point and the braid finishing at the right.

Fig. 18 shows a changing machine layout while maintaining the same horngear neighborhood
connectivity.

Deliverable D1.4 Page 23 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a)

(b) (c)

Figure 15: (a) Tracks from horngear connection, (b) left-tracks and carrier positions, and
(c) right-tracks and carrier positions.

Page 24 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) (b)

(c)

Figure 16: (a) Carrier positions at time step t, (b) carrier positions at time step t+1, and
(c) carrier paths.

Figure 17: Path plot with changes of the horngear neighborhood connectivity over time, start at
the left, and a change at half-way point.

Deliverable D1.4 Page 25 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 18: Same horngear neighborhood connectivity for three geometric machine variants.

Figure 19: Graph to matrix.

2.3.3. Braids - from graphs

The underlying logic of the braids described using graphs is the same as the matrix-input except
for an additional pre-process that translates the graph into a matrix. Graph edges used as
input are exploded and aligned in the z-direction (direction of time steps of the braid fabrication
simulation) to obtain a directed graph (Fig. 19a). The x- and y-positions of the start- and end-
points of all edges in the graph inform a 2D-grid which gets repeated for all z-positions of the
points (Fig. 19b). The grid points get numbered and sorted in a meander shape (1-dimensional
list), repeated for each z-position (Fig. 19c). The directed graph is then analysed using the
NetworkX library for Python to determine ‘all simplest paths’ from all source nodes to all sink
nodes (Fig. 19c and Fig. 19d, white numbers). Nodes from these simplest paths can be written
into 1-dimensional lists for each time step t (Fig. 19e). As explained earlier, the resulting matrix
can be used as the input for the horngear neighborhood connectivity (Fig. 20).

Figure 20: Horngear neighborhood connectivity for the Graph in Fig. 19a

Page 26 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

2.3.4. Braid simulation

All carrier positions are plotted as points during the simulated fabrication of a braid. For
each point, and each time step, the x- and y-coordinates are derived from the position in the
machine, and the z-coordinates are incremented (Fig. 21a). The resulting points are connected
with individual curves, one for each carrier starting position (Fig. 21b). The curves are divided
by equal length, with the length of the curve division being based on the desired thickness of
the simulated filament. Each division point is used as the center for a sphere with a diameter
of the curve division length (Fig. 21c). The spheres are used as one of the input constraints
(sphere collide) for Kangaroo 2, a physics engine for the CAD software Rhinoceros 3D. During
the physics-based relaxation, the curves try to become straight lines, while the spheres are not
allowed to enter each other. This results in a coarse approximating simulation of individual
filament interaction (Fig. 21d).

2.3.5. Conclusion – braiding instructions

We have shown how specific braid machine instructions (machine configuration and runtime
switching of carriers) can be derived from high-level braid descriptions. We have also resolved
the carrier collision issue by means of having a structured start sequence for the carriers. The
implication of using this method is that we are not able to produce all possible generated braid
designs using the approach previously reported in D3.1. The benefit of the carrier constraint
method is that it greatly simplifies the analytical approach to producing fabrication instruction.
As a further iterative development step, these constraints should be incorporated into the braid
representation method to guarantee that produced designs can be fabricated.

2.4 Conclusion

This concludes our reporting on the braiding machine. We have improved the robustness of the
braiding machine and it is now able to braid with a wide range of materials. We have finally
gotten to the bottom of the theory of the braiding machine and understand how to create braiding
patterns that do not cause self-collisions in the machine. Finally, we are able to compile high-level
3D models into configurations and controllers that can be run on the braid machine. While there
are still practical details that needs to be worked out, the development of the braiding machine
has come full circle. From the initial idea in the beginning of the project to the theoretical
understanding and automatic generation of controllers in the last period of the project.

Deliverable D1.4 Page 27 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) (b)

(c) (d)

Figure 21: Time-based carrier positions to braid simulation.

Page 28 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

3 Shaping of Braided Structures

Once the braided structure has been produced we are interested in controlling its shape through
internal actuation. There are two questions related to this question. The first is what is the
mechatronic basis for this shape change and once the basis has been created how do we develop
controllers for them. We will address these questions here.

3.1Distributed actuation

In order to actuate the braided structures we have made an actuator node, which can be mounted
on the intersection of two strands. The final version of the actuator node (see Fig. 22) is a
sandwich of two semi ellipse PCBs with a combined height of approximately 35 mm, 82 mm
width and a weight of 26.2 grams (see Appendix for details on the hardware iterations). The
node is controlled by the ESP32-Wroom with build-in Wifi that is used for communication with
a host.

The actuator is installed on the structure by sandwiching the node onto an intersection where
the braided strands cross (see Fig. 23). The actuator node obtains power from two wires that
runs in parallel to one of the strands. An IDC feed-through connector is used, hence, is possible
to power several actuator nodes in series.

The actuation is performed by a servo, which has a stall torque of 600 grams at 4.8 V1 and
is able to rotate two strands with respect to each other in a scissors-like movement (see Fig. 24).
The actuator node is complete and tested and we are in the process of installing 12 nodes in a
braided structures to actuate it.

Figure 22: Overview of the final version of the actuator node.

1https://www.adafruit.com/product/2201

Deliverable D1.4 Page 29 of 66

https://www.adafruit.com/product/2201

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 23: The separated actuator node sandwich is connected to two strands (in this case made
from glass-fibre reinforced polymer) and powered through an IDC pass-through connection. The
left photo shows one strand connected to one PCB whereas the right shows the other strand
connected to the servo motor of the other PCB.

Figure 24: The node is able to rotate two strands with respect to each other.

Name Functionality
ESP32-Wroom Micro-controller with wifi

NCP1117ST33T3G Voltage Regulators 3.3V
SG51R Servo

IDC Feed through Power connector

Table 1: A list of key components of the actuator node

3.2 Expansion and contraction with twisted fibers

In the previous section we investigated how rotation can be used to actuate a braid. In this
section we consider the idea of having actuation in the form of contraction and expansion: either
as separate actuators in parallel to the braided structure or the braided structure itself. We have
made artifical muscle fibers from polyamide 6. Polyamide 6 (Nylon 6) contracts when heated.
This e↵ect can be increased by inserting twist into the fiber. Eventually the twist insertion will
lead to coiling of the fiber. All muscles produced were made from 80 cm of ‘raw’ polyamide 6
of diameters 0.3 mm, 0.5 mm, and 0.8 mm. In general the produced fibers can be classified into
coiled and large-diameter-coil muscles.

Coiled muscle fibers. Next, the fiber is twisted until the fiber is fully coiled. During twisting
an insertion load is attached to the fiber (250 g for 0.5 mm fiber). This results in a substantially
shorter muscle in comparison to the uncoiled fiber. Coiled fibers achieve lift of high loads by
contraction that is limited by the distance between adjacent coils. To twist the fiber, it is fixed to

Page 30 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 25: Coiled muscle

Figure 26: Large diameter coil muscle

a motor (19.6 Watt, more power would be required for diameters � 0.8 mm) on one end and to
the load on the other end. The load is fixed to prevent it from spinning while vertical movement
is possible.

Large diameter coils. Large diameter coils allow greater stroke distance at cost of a reduced
lift weight. Twist is inserted until the fiber is about to start coiling. The setup is similar to the
coiled muscles, however, to ease the production of non-coiled muscle fibers the fiber was fixed at
both ends. To allow the shortening of the fiber during twist-insertion (no-coiling), the fiber was
installed with about 12.5 cm overlap. During the twist insertion it was held tight by hand to
prevent formation of coiling nuclei.

The twisted fiber is then wrapped around a metal rod and fixated. Then the muscle is

Figure 27: Muscle prepared for annealing

Deliverable D1.4 Page 31 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

annealed to stabilize its current form. This allows us to produce muscles with greater distances
between adjacent coils and a larger coil diameter.

The annealing process is performed in an oven at 149�C, that is the annealing temperature
for polyamide 6. Temperature is ramped up by 50�C/h. The annealing temperature is held for
about an hour before the cooling ramp down of 25�C/h.

Homo- and Heterochiral muscle fibers. Homochiral muscle fibers are muscles, that have
matching twist and wrap direction. These muscles do contract when stimulated. Heterochiral
muscles, that is, opposing twist and wrap direction, expand when stimulated.

Heat stimulation. The contraction or expansion of the artificial muscle fibers is achieved by
homogeneously wrapping the muscle precursor with NiCr80 heating wire (96.4 ⌦/m) to allow
direct electronic control with 2.92 to 7.13 Watt, depending on the raw fiber diameter and therefore
the length of the used heating wire.

Figure 28: Closeup of heating wire

Findings about coils of large diameters.

• homochiral 0.8 mm muscles achieved a contraction of 54%

• heterochiral 0.8 mm muscles achieve expansion of at least 160% (250% without the unre-
sponsive part of the muscle)

• locomotion of a fibers seems possible, however, there might have been impact from stresses
in the electronic cables

• placing muscle fibers in a U-shape allows ‘folding’ of homo- and heterochiral muscles

• inserting additional twist into the muscle improves the folding movement

• combination of homo- and heterochiral muscles can be combined for movement in one
direction.

• muscles also produce circular motion (torsional) forces around the muscle’s axis when
stimulated

• small diameter muscles react faster than those with higher diameter

In summary, the twisted muscle fibres made from polyamide 6 can be an interesting option
for future research on actuated braids.

Page 32 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 29: Braid actuation test setup

3.3Distributed control of braided structures

In the previous sections we developed the technology to actuate and shape a braided structure.
In the following we study how to control the movement of a braided structures in a distributed
and automated way using machine learning. However, first we introduce the experiment and its
motivation. Second, we report our method for applying distributed machine learning control to
braided structures.

3.3.1. Motivation and assumptions

We have chosen a distributed approach to actuation because at the practical level we reduce
the number of wires in the physical setup, that then allows us to rapidly mount or change the
position of actuators on a braided structure.

The primary use case is a situation where distributed actuation of a braided structure can
help increase the growth of a plant. We envisioned a situation where a braided structure with
12 actuators and one light sensor hangs from a ceiling with a strong light source nearby (see
Fig. 29). The actuators should then control the braided structure to move it as close as possible
to the light source, that – if a plant was embedded and growing in the structure – would allow
the plant to get closer to the light source as well.

Instead of hand-coding a controller for this specific use case, we developed a machine learning
framework that would allow a neural network to learn to control the movement of the actuators.
For the specific experiment the controller learned to optimize the light. However, in general it
could learn other tasks as long as a suitable feedback is available.

One learning strategy would be to do online learning where the controller is rewarded by the
sensed level of light and thus the braids proximity to the light source. However, such an approach
is likely to be meet some challenges. Mainly, a large training time of such a system should be
expected as online training of a physical artifacts usually takes long compared to training a
model in a simulated environment. To address this issue of long training time, we decided to

Deliverable D1.4 Page 33 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 30: Braid simulation

work towards simulating the structure and actuators and train the controller in this simulator.
In a second step we in the future would apply the virtually trained model to the physical braid.

3.3.2. Simulated environment

To train a model in a simulated environment that potentially could be applied to the physical
braided structure, we would need a simulation of a braided structure with actuators that were
close to the physical setup we envisioned. A simulation of the structure with actuators and light
source was created using the software Rhino and Grasshopper. An OpenAI gym environment
and a TensorFlow based neural network where created to facilitate the training. A script was
then written to link the simulated environment with a neural network, allowing the network to
issue commands and retrieve data from the simulation. Screen-shots of the simulated braided
structure can be seen in Fig. 30.

We tested the environment with the reinforcement learning algorithm REINFORCE [5], to
test the simulation in a learning tasks. We found that training of the model would be infeasibly
long because the simulator’s computational demands using cross platform communication. As
improvement light readings for all possible positions were stored in a lookup table that was then
used during trainging. As expected training time was significantly reduced.

As a preliminary test, we train the model with reward for turning on a specific actuator. To
develop this behavior, the model was given a reward each time it performed a correct command.
The model had two hidden layers of 100 neurons each with ReLU activation. The input is a
vector of the position of the actuators and the output is a vector of the target actuator positions
in the next control cycle. The training was done over 500 epochs with a batch size of 300 for each
epoch, and an environment that reset after five steps. The model managed to find the optimal
solution (turning on the indicated actuator and all other acutators o↵) after around 150 epochs.
The results are shown in Fig. 31.

Next we trained the model to search a static light source with a limited command set of five
di↵erent actuation commands. To develop this behavior, the model received the intensity of the
simulated light source as a reward, that is, giving a bigger reward the closer the braided structure
was to the simulated light source. We used the same training parameters as above. Here, the
optimal solution was found after about 350 epochs, moving the braided structure as close to the
simulated light source as possible. The results are shown in Fig. 32.

Based on our experience with these experiments, we decided to go for an approach with eight
di↵erent actuation commands, since it allowed the model to approach the light source while
maintaining a relative low training time. For further work, we will also experiment with a model
that has full control of each actuator. As these results show, we are able to train a model to
control a braided structure actuation in the simulated environment. However, if we changed

Page 34 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 31: Preliminary tests: average reward over training steps.

Figure 32: Left: average reward when training a model to search a simulated light source; right:
example of a simulated braided structure searching the simulated light source.

Deliverable D1.4 Page 35 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

the position of either the light source or the braided structure, the model performs similarly to
an untrained model. This suggests that the model lacks adaptability, which is important, as a
small change in the direction of a real world light source or the real world flexibility of the braid
material is to be expected.

A solution could be to utilize an approach that allows for better generalization of learning
tasks. One such approach is MAML (Model Agnostic Meta Learning), that is described to
help agents perform better in environments where the task can change (such as a light source
changing position, or the braid structures resistance changes). Furthermore, we still need to test
the approach on a physical setup based on the work described in Sec. 3.1. While this study based
on simulations was successful, we expect that complications, such as noisy light data or braid
material deterioration, would introduce additionap challenges during the training process.

3.4 Conclusion

In this section we provided an overview of our e↵orts to actuate and control braided structures
once produced. We have developed and tested 12 actuation node that can be mounted on
braided structures. We have also investigated an alternative actuation technology based on
twisted fibers which is suited for braided structures due to the compact size and easy integration
into a braided structure. Finally, we reported a learning-based approach that allows us to control
braided structures.

Page 36 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

4 Sensing Plants

In multiple earlier deliverables (D1.1, D1.2, D1.3) we reported on the development of the
CYBRES phytosensor System in order to create a way to interact with plants. In the current de-
liverable D1.4 in line with D2.4 we would like to present the possible applications of Phytosenors
togehter with some experimental data and applications of Phytosensor for bio-hybrid systems.
The current work, description of di↵erent functionalities, updates on the Phytosensor related
firmware, software, additional features reflected in the MU User Manual2.

4.1 Software overview

The software includes four levels, see Fig. 33, the lowest device-level runs on the MU device.
It includes the real-time operating system – MU OS – developed by CYB for programmable-
systems-on-chip (PSOC), impedance spectrometer, and parts of the firmware for low-level data
handling. The MU OS includes di↵erent device drivers, the measurement module, data processing
unit, and tasks scheduler. The development started in 2013 and is currently used on di↵erent
CYB devices. The client-level software runs as the MU client program and performs all main tasks
related to device and file management, handling time and excitation. The client operates with
Gnuplot and DA (detector-actuator) scripts. Gnuplot scripts represent the third software level
and is responsible for graphical utilities, 3D/4D plot and regression functionality. Finally, DA
scripts handle statistical data processing, sensor-fusion functionality, perform actuator control
and multi-device management. Gnuplot and DA scripts are open for users and can be customized
for particular purposes.

primary
sensors

device level

client level

gnuplot scripts
level

DA scripts
level

secondary
sensors

real-time MU OS,
impedance

spectrometer,
data processing

by firmware

device
management

multi-device
management

actuator
control

sensor-fusion
functionality

statistical
data processing

time/excitation
management

file
management

main data
handling

graphical
utilities

regression
functionality

3D/4D plot
functionality

hardware-based
signal processing

(programmble
system on chip)

Figure 33: Software structure of the MU system.

The user interface is shown in Fig. 34. This software system includes a plotting engine, the
USB interface part, the MU OS terminal, and di↵erent modules (in particular for phytosensing
purposes). The client program has six sections: ‘control’ (system control), ‘impedance’ (setting

2
CYBRES MU3 Phytosensor System User Manual

http://www.cybertronica.de.com/download/MU-EIS_Manual_en.pdf

Deliverable D1.4 Page 37 of 66

http://www.cybertronica.de.com/download/MU-EIS_Manual_en.pdf

EU-H2020 FET grant agreement no. 640959 — flora robotica

for the EIS measurements), ‘plot’ (setting for the graphical output), ‘system’ (system setup),
‘calibration’ (calibration settings), and ‘output’ (the output window of the operating system and
some interactive commands). The client part is fully compatible with MU OS and is also used
in di↵erent CYBRES projects and devices.

Figure 34: Client software with the option ‘phytosensors’ chosen and the list of available plots.

For phytosensing purposes a specific module was developed in the client program. It is in-
tegrated in the section ‘plot’ and maintains over ten di↵erent subsystems for data processing
(also regression analysis for online data in the ‘time mode’). Currently, the work is concen-
trated on developing algorithms and strategies for autonomous data processing, in particular
electrophysiology.

4.2Outdoor setup with the phytosensor

The phytosensor was further developed for use not only indoor, but also in outdoor environments.
The connectors were correspondingly modified and water-proof packaging was used. There are
two versions of the setup: with wired solution based on PoE (Power over Ethernet), see Fig. 35,
and one based on solar cells and WiFi communication, see Fig. 36. Both solutions have their
own applications areas: wired solution with Ethernet is intended for long-term installations in
the area of 50 m2, whereas wireless solution is mostly for short term (several days) experiments.
Outdoor setup enables monitoring trees, bushes and similar biological objects; with multiple
phytosensors and an urban or forest ecosystems can be monitored. Example of measurement is
shown in Fig. 37.

Page 38 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 35: Outdoor setup with wired (Power over Ethernet – PoE) solution, powering and data
communication via PoE.

4.3 Phytoactuation: robot arm setup

The list of available actuators for MU3 includes the following groups:

1. wavOut/mpegOut device: play sound .wav/.mp3 file from position ‘x’ to position ‘y’;

2. sound device: change volume, change right/left stereo balance;

3. MIDI device: generate musical MIDI tones;

4. text-to-speech (TTS) device: generate the voice message;

5. logical/probabilistic device: to compute di↵erent logical/probabilistic operations and
expressions from detectors;

6. adaptation mechanisms: several instruments and methods to implement adaption in
probabilistic networks;

7. RGB LED device: turn on/o↵ R, G, B components of LED connected to the MU system;

8. external physical devices connected to the MU system: for example, turn on/o↵
lamps/pumps connected to the MU system (by sensing the ASCI commands in COM-port);

9. electrical stimulation device: generate the electrical stimulation by the MU impedance
measurement system;

10. external physical devices connected for example to USB port: generic control of
external devices;

11. ‘intelligent house’ devices and systems: on/o↵ and parametric control of these devices;

12. send message to file: write text message to file;

13. send message to IP port: send text message to specific IP port in internet/intranet;

14. send message to twitter account: send text message to specific twitter account.

Deliverable D1.4 Page 39 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 36: Outdoor setup with solar cells and WiFi data transfer

Page 40 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

 20000

 20500

 21000

 21500

 22000

 22500

 23000

 23500

 24000

 24500

 25000

R
M

S
 m

ag
ni

tu
de

, O
m

Outdoor setup, tree biopotential measurement, CYBRES, Device ID:336030

ch1, measur. 1, 0.45 kHz

 490000

 495000

 500000

 505000

 510000

 515000

16:25 16:30 16:35 16:40 16:45 16:50 16:55 17:00 17:05 17:10 17:15 17:20 17:25

Vo
lta

ge
 p

ot
en

tia
l,

µV

Time (h:m, real time)

Ch 1, measurement: 1

biopotentials

tissue impedance

Figure 37: Example of measurements with outdoor setup on a tree.

Deliverable D1.4 Page 41 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Below are several example of technical tests we have done using the MU3:

USB relay with FTDI driver (e.g. type SainSmart 4/8 channel USB Relay Board): the
board is controlled by 8-bit binary number, where each bit represents the relay state (0 =
o↵, 1 = on), for example, ‘10001001’ would turn on relays 8, 4, and 1, all others would
turn o↵. The value 137 (’10001001’) should be send via actuator A21-A40, for example,
‘A21=COM6 9600 %H15’ will turn on the relay 1, 2, 3, 4, ‘A21=COM6 9600 %H0’ will
turn o↵ all relay (COM6 is an example, it can be di↵erent in another system). Note that
the control software for the USB Relay Board should be executed before starting the client.

Energenie EG-PMS2 programmable 6-Socket Power Outlet Strip (USB version): this device
is controlled by own software ‘pm.exe’, use actuators A191-A200 for control. Note that
‘pm.exe’ should be executed before starting the client.

Pololu Mini Maestro 6/12/18/24-Channel USB Servo Controller enables USB based con-
trol over PWMmotor drives, use it with A21-A40 actuators and ‘%Hx’ marks for controlling
the motors (see user manual of the Pololu devices).

using MU actuators with boards MU3.0, MU3.1, . . .

In particular we tested Pololu Mini Maestro 12-Channel USB Servo Controller connected to
a 6DoF robot arm, see Fig. 38. For controlling the behaviour of the robot the event-driven Petri
nets are used, see Sec. 4.3.1.

4.3.1. Phytoactuation: event-driven Petri nets

The DA module provides the multi-token Petri-nets-like mechanism for implementing event-
driven reactions. In fact, the implemented detector-actuator coupling, shown in Fig. 39(a), can
be represented in the Petri net form, shown in Fig. 39(b), taking into account specific event-driven
character of the DA module.

The Petri places are represented by Dx and Ax states, the Petri transitions are implicitly
defined for all actuators and detectors, and Petri arcs are implemented in the condition mech-
anism. The important component of Petri nets is the token system that describes a concurrent
behaviour of the network and the activated places. Since the concurrent behaviour of Dx ! Ax

is defined by detectors Dx, tokens are primarily used here for activation of states.
In the case of the DA module, tokens are z-variables of A171-A180 (and corresponding A181-

A190) – 10 di↵erent tokens – that can cake take any integer values. The actuators A211-A220
analyze the value of corresponding z (each of A211-A220 corresponds to A171-A180) and can
call an actuator. Following the concept of executing Dx ! Ax at one step, all A211-A220 belong
the ’replicator’-type of actuators, i.e. all related activities are executed at the same step.

For example, consider the shown in Fig. 39(a) fragment of Petri net. It defines four places and
transitions, which however can be understood in two di↵erent ways. The transition can happen
due to activation by di↵erent detectors (without considering internal tokens), or the transition is
triggered by the same detector but the selection of activities is controlled by the token, Fig. 39(b).
The first case represents in fact a reactive behaviour and can be covered by a normal mapping
Dx ! Ax. More interesting case appears when the same detector should activate di↵erent
actuators based on tokens. The fragment shown in Fig. 39(b) can be transformed in the form,
suitable for the DA module, as shown in Fig. 40.

Page 42 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a)

(b)

Figure 38: 6DoF robot arm with Pololu Mini Maestro 12-Channel USB Servo Controller connec-
ted to the phytosensor system. (a) Used setup; (b) Example of scenario with robot arm.

Deliverable D1.4 Page 43 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Dx Ax
true

(a)

Dx Ax

true

detection actuation

(b)

1 2

34

(c)

A1
Dx Dx

DxDx

A2

A3A4

if z=1

if z=2

if z=3

if z=4

z=1

z=z+1

z=z+1

z=z+1

(d)

Figure 39: Petri net form of detector-actuator coupling: (a) the implemented detector-actuator
coupling; (b) the corresponding Petri net; (c) fragment of Petri net with four places and trans-
itions; (d) modified fragment taking into account activation by detectors and tokens.

The executable code is shown below:

-- define detector and connect to replicator
I1=4;
P1=1;
D1=160; call replicator A160

-- define replicators
A160=171 211; call A171 and A211
A161=181 4; call A181 and A4

-- define token system
A171=1 0; increase z0 by 1
A181=0 0; set z0 to 0
A211=1 1 2 2 3 3 4 161;

Page 44 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Dx A171
A2

A1

A3

A4

true

A211:if z=1

A211:if z=2

A211:if z=3

A211:if z=4

z=z+1

z=0

Figure 40: The fragment from Fig. 39(b) transformed in the form, suitable for the DA module.

Note that by using A171=0 x; or A181=0 x; (for all A171-A190) the values of z0...z9 can
be set on the value x. Taking into account multiple tokens and detectors, the Petri-nets-like
behaviour provides rich possibilities for actuation.

Probabilistic transition in Petri nets. There are two types of transitions in the fragment
shown above: 1) single transition like the detector – replicatorD1 ! A160; 2) multiple transitions
like the replicator A160 ! A171 and A160 ! A211, the token system A211. Following the rule
for probabilistic system, only the single transitions can be assigned with probabilistic value by
’B’ keys. Thus, D1 ! A160 can be used as probabilistic transition.

4.4 Production of phytosensors for tests, evaluations, certification and demonstrations

For tests, evaluations, certification and demonstrations CYB produced about 25 phytosensors,
see Fig. 41 and several replacement elements. These devices are distributed among partners in
the consortium, used in exhibitions and demonstrations.

Figure 41: Produced phytosensors for tests, evaluations, certification, and demonstrations

4.5Hardware exploitation: EMC tests and certification

As a part of exploitation, CYB performed development and tests towards EMC (electromagnetic
compatibility) of the phytosensor system in order to comply with EMC requirements for In-
formation Technology Equipment (ITE), namely standards CISPR 24 (Information technology

Deliverable D1.4 Page 45 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

equipment - Immunity characteristics - Limits and methods of measurement) and CISPR 32
or 22 (Electromagnetic compatibility of multimedia equipment - Emission requirements). The
pre-compliance tests and debugging of issues are performed locally at CYB facilities, see Fig. 42,
and tests performed externally by involving the certified laboratories of SGS Germany GmbH
(Munich), see Figs. 43 and 44. The phytosensor successfully passed tests specified by EN 61326-
1:2013 (IEC 61326-1:2012) and FCC 47 CFR Part 15 §15.107, §15.109 (ICES -003 Issue 6) as
well as conditions of the RoSH cetrification.

4.6Operating phytosensor: interactions with users via color indication

Interactions with users is possible via di↵erent means: light, sound, mechanical actuators,
text/voice messages, and others. Light belongs to most important ways because of multitude of
signals coded by colors, pulses and intensities. Low-intensity light does not disturb users and
thus is preferable as means of interaction. We tested di↵erent possibilities for color indication:
from DMX lighter up to light bases. Several of there solutions are shown in Figs. 45 and 46.

4.7 Conclusion

We have given an overview of the MU3 unit that has been developed throughout the flora robotica
project and further use of the unit can be found in D2.4. The unit has extensive capabilities in
terms of sensing and controlling external actuators based on this sensor input. Furthermore, it
has a rich feature set in terms of data recording, analysis, and visualization. The MU3 unit has
passed certification and is ready for commercialization.

Page 46 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a)

(b)

Figure 42: Tests on electromagnetic compatibility of the phytosensor system in the local CYB
facility.

Deliverable D1.4 Page 47 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 43: Tests on electromagnetic compatibility of the phytosensor system in the SGS Germany
GmbH (Munich) certified laboratory: test on EM immunity.

Page 48 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 44: Tests on electromagnetic compatibility of the phytosensor system in the SGS Germany
GmbH (Munich) certified laboratory: test on electrostatic discharge immunity.

Deliverable D1.4 Page 49 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 45: Interactions with users via color indication: low-intensity RGB light ball.

Page 50 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) (b)

Figure 46: Interactions with users via color indication: (a) low-intensity RGB light base 6 inch;
(b) middle-intensity RGB base 8 inch.

Deliverable D1.4 Page 51 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

5 Plant Shaping

In the previous deliverable D1.2 Evaluation of mechatronics prototype of the robotic symbiont
including supporting software, we have reported on the first generation of decentralized hardware
for the delivery of light stimuli to shape plants. Following rounds of experimentation and hard-
ware development, we have established a more generalized protocol for this type of plant-robot
experiment, which we are in the process of making publicly available as a resource. Here we
report on the hardware section of our generalized open-source protocol. The other sections of
our protocol are reported in the companion deliverable D2.4 Report on the final algorithms and
plant-a↵ection of bio-hybrid organism.

Step 1. Organize robot capabilities into decentralized nodes with single-board computers, in-
tegrated into modular mechanical supports. Ensure each identical robot node is able to control
and execute its own behavior.

Step 2: Robotic provision of stimuli to plants. Provide blue light (400–500 nm) to plants
at controllable intervals, at an intensity that will trigger their phototropic response, from the
direction and orientation required for the respective portion of the experiment.

a) Select a red-green-blue (RGB) light-emitting diode (LED) or an isolated blue LED. In
either case, the LED should include a blue diode with peak emission �max = 465 nm.

b) Select an LED that when congregated in groups and set in the precise conditions of the
utilized robot, can maintain the required light intensity level in each direction tested in the
experiment setup. For each direction being tested, the blue diodes in the LEDs in a single
robot should collectively be capable of maintaining a light intensity level of approximately
30 lumens without overheating, when situated in the utilized robot enclosure and any
utilized heat dissipation strategies. (For example, in a robot utilizing three LEDs per
direction, with microcontroller-enabled regulation of intensity, if the blue diodes emit with
maximum light intensity � = 15 lumens, then without overheating they should be able
to maintain 65% of the maximum.) The selected LED should have a viewing angle of
approximately 120�.

c) Interface the LEDs to the robot’s single-board computer (either directly or indirectly via a
microcontroller or other interfacing) such that individual control is enabled, either of each
LED or at least of the LED groups serving each direction being tested in the setup.

Step 3: Sensing procedure for the proximity of plant growing tips. Use processed
readings from infrared proximity (IR-proximity) sensors to reliably and autonomously detect the
presence of plants approaching from each direction tested in the setup.

a) Select an IR-proximity sensor that regularly detects the growing tip of the selected plant
species, when arranged perpendicularly to the central axis of the direction from which
the plant approaches (when tested in an unobstructed environment). Successful detection
should occur starting from a distance of 5 cm, as seen in Figure 47 starting at the timestamp
labelled ‘07.04.16’ on the horizontal axis.

b) Interface each IR-proximity sensor to the robot’s single-board computer, and implement
a weighted arithmetic mean approach to process the sensor readings into a determination
of whether a plant is present within 5 cm. The sensor readings from the most recent 5 s
should give 20% of the final average weight used in detection.

Page 52 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

c) The selected IR-proximity sensor should not emit critical wavelengths that could interfere
with the light-driven behaviors of the selected species, for instance, the shade-avoidance
response. If the sensor partially emits at wavelengths below 800 nm, such wavelengths
should not be present at distances greater than 5 mm from the sensor’s IR source, as
measured by spectrometer.

Figure 47: Sample IR-proximity sensor scaled voltage readings (vertical axis) during an experi-
ment. Higher values indicate plant tip detection. In the case shown here, shortly after ‘03.04.16,’
a plant tip climbs a support and arrives in the field of view of the robot.

Step 4: Overall hardware. Distribute the experiment functions over the set of robots, such
that each robot can autonomously manage the portions that proceed in its own local area.
Arrange the robots’ provision of light stimuli and sensing capabilities according to the respective
plant growth directions being tested.

a) Compose each robot around a single-board computer that interfaces with the sensors and
actuators. The computer should be connected to a Wireless Local Area Network (WLAN)
module. If using an o↵-the-shelf single-board computer (e.g., a Raspberry Pi), the in-
terfacing to sensors and actuators can for instance be accomplished via a custom printed
circuit board (PCB) attached to the computer’s header. Each robot should be individually
powered, with its own battery backup if possible.

b) Include one IR-proximity sensor per direction being tested for approaching plants, or in a
continuous growth field enough sensors for their view angle to cover the possible growth
area, according to the above requirements.

c) Include enough LEDs to deliver the above blue light requirements, per direction being
tested for approaching plants. If using RGB LEDs rather than blue LEDs, optionally
enable emittance from the red diode when the blue diode is not in use, to augment the
red light delivery described below (for plant health via the support of photosynthesis). If
red light is emitted from the robots at certain intervals, then the red diode of the RGB
LED should have peak emission at approximately �max = 625–650 nm, with no critical
wavelengths overlapping the green band (i.e., below 550 nm) or the far-red band (i.e.,
above 700 nm). The intensity level selected for red diodes in the robots should not produce
heat levels higher than those of the blue diodes.

d) Include hardware that enables local cues between robots, for example a photoresistor (i.e.,
light-dependent resistor or LDR) facing each neighboring robot to monitor their light emit-
tance status. Alternatively, the status of local neighbors can be communicated via WLAN.

e) Include hardware to dissipate heat, as required by the conditions of the selected blue diodes
and the utilized robot enclosure. Heat dissipation can be executed by a combination
of aluminum heatsinks, vents in the robot’s case enclosure, and fans. (For example, If

Deliverable D1.4 Page 53 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

aluminum heatsinks are mounted to the individual LEDs, but they still overheat in the
robot enclosure, a fan can be added in a location with suitable airflow between the heatsinks
and vents.) If there is any chance that the LEDs or other components could overheat during
an experiment, then unconditionally include a fan activated by a digital temperature sensor
on the single-board computer or supplemental PCB.

f) Organize the robot components such that the relevant directions are uniformly serviced.
Ensure the blue diodes distribute an equivalent light intensity to each of the directions from
which plants may approach, and that likewise the IR-proximity sensors are comparably
positioned for their respective approaching growth directions. If including photoresistors
for local communication, ensure they are equivalently positioned for each direction facing
a neighboring robot in the setup.

Step 5: Mechanics. Integrate the robots into a set of modular mechanical supports that hold
the robots in position (as needed) and serve as climbing sca↵old for the plants, restricting the
plants’ likely average growth trajectories. The robots can optionally serve as supplementary
mechanical joints between the supports, positioned such that they intersect the plant growth
trajectories.

a) Minimize the size of the robot, such that it can be reliably surpassed by an unsupported
growing tip of the selected plant species. Reducing robot size to the greatest extent possible
will optimally increase experiment speed.

b) Shape the body of the robot to be as unobtrusive to plant growth as possible, in the event
that a growing tip needs to incrementally navigate around the robot. Given the helical
trajectory of circumnutation in twining plant species, recommended shapes will be rounded,
faceted, domed, or otherwise absent of especially sharp protrusions or acute indentations.

c) Select a material and profile (i.e., shape of cross-section) for the mechanical supports, such
that the selected plant species can e↵ectively climb it. For P. vulgaris, select for instance
a wooden rod with circular profile of a diameter roughly 8 mm. The mechanical supports
also need to be structurally sti↵ enough to support the plants and robots within the setup.
They can be augmented by supplemental structural support as needed (e.g., a transparent
acrylic sheet behind the setup).

d) On each robot include attachment points to anchor the specified mechanical supports.
Include enough to attach support for each direction by which a plant may approach or
depart a robot.

e) Arrange the mechanical supports roughly in a regular grid pattern, uniformly diagonal
with an angle of inclination at roughly 45�or steeper. The lengths of the supports and the
distances between supports—which define the distances between robots and the size of a cell
in the diagonal grid—should also be roughly uniform, depending on the objectives of the
overall experiment setup. The minimum exposed distance of the sca↵old between robots is
30 cm, to allow su�cient room for the climbing plants to attach after exploring the area in
their unsupported condition, or for them to adequately explore a denser sca↵old condition.
The preferred exposed length is 40 cm or more, to allow some bu↵er for statistically extreme
cases of plant attachment.

Page 54 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) Left guiding #1 (b) Left guiding #2

(c) Left guiding #1, closeup of (a). One week of

growth; one plant attached.

(d) Left guiding #2, closeup of (b). One week of

growth; one plant attached.

Figure 48: Guiding plant growth to the left-hand robot. Frames of results from the verification
experiments, which test the ability of the robotic nodes’ guiding state to reliably steer the plant
through a binary decision, to reach the correct rod and target.

5.1 Verification experiments of single plant decisions

These experiments follow the hardware, software and overall experiment setup defined in D1.2
Evaluation of mechatronics prototype of the robotic symbiont including supporting software.
There are two programmed states for the robot nodes: 1) the guiding state, in which a robot
emits only blue light to attract the plants by triggering their phototropic response, and detects
the proximity of approaching plant tips, and 2) the feeding state, in which a robot emits only
red light, supporting the plants’ photosynthesis without triggering any phototropic response.

To further test the bio-hybrid system described in previous deliverables, we run a small set of
verification experiments in addition to the original control experiments (where all robotic nodes
were set constantly to the feeding state, to test the growth and motion behavior of the plants
in conditions without triggered phototropism), and the original predefined pattern experiments
(testing the ability of the robotic nodes and bio-hybrid setup to correctly shape plant growth in a
full-length experiment, into a predefined pattern on a 180 cm diagrid). These new experiments are
verification experiments, where we verify the ability of the robotic nodes’ guiding state to guide

Deliverable D1.4 Page 55 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

(a) Right guiding #1 (b) Right guiding #2

(c) Right guiding #1, closeup of (a). Two weeks of

growth; two plants attached.

(d) Right guiding #2, closeup of (b). Three weeks of

growth; one plant attached.

Figure 49: Guiding plant growth to the right-hand robot. Frames of results from the verification
experiments, which test the ability of the robotic nodes’ guiding state to reliably steer the plant
through a binary decision, to reach the correct rod and target.

plant growth to the correct target—in a binary decision between left and right—by triggering
the plants’ phototropic response to blue light. The new verification experiments maintain the
same experiment setup conditions used in the original control experiments and predefined pattern
experiments, including the same minimum of four plants per experiment, and the same hardware
and mechanical elements with uniform positions and orientations maintained.

The verification experiments are conducted over approximately seven weeks in total, and
each contains a minimum of four plants. These experiments test the ability of the distributed
mechatronic system to guide the plant toward a specified target, by steering the plant’s decision-
making at a given junction. This is tested in two experiments per target direction at the first
diagrid junction. In each experiment, the targeted node—left or right—is set to the guiding
state, and the opposing node is set to the feeding state. An experiment is considered successful
if all attached plant tips find the correct rod, and only the guiding node detects an approaching
plant. Another feature considered favorable is a high proportion of unsupported shoots growing
with bias to the guiding node.

Page 56 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Verification experiment results:

1. Figure 48: two left-decision experiments. In these left guiding experiments, the node
left of the junction is set to the guiding state, with the opposing set to feeding (a,b). Each
frame shows the condition of growth just before the guiding node detects the approaching
plant. In both experiments (see c,d), at least one plant attaches to the correct rod (i.e.,
the left-hand rod). None of the plants attaches to the incorrect rod. In further evidence
of the nodes’ e↵ects, the unsupported plants also generally display growth biased in the
correct direction, toward the left-hand node.

2. Figure 49: two right-decision experiments. In the right guiding experiments, the
node right of the junction is set to the guiding state, with the opposing set to feeding
(a,b). Each frame shows the condition of growth just before the guiding node detects the
approaching plant. In both experiments (see c,d), at least one plant attaches to the correct
rod (i.e., the right-hand rod). None of the plants attaches to the incorrect rod. In further
evidence of the nodes’ e↵ects, the unsupported plants also generally display growth biased
in the correct direction, toward the right-hand node.

There are two verification experiments per target (i.e., the node set to guiding), all occurring
at the first diagrid junction. They each run continuously, for 13 days on average. In each of
the four experiments, a plant successfully chooses and attaches to the correct rod, climbing it
until reaching the target, see Figs. 48 and 49. In over 90% of the unsupported shoots, the
typical circumnutation motion of winding is pronouncedly biased to the target. This results in
consistent tilting of the upright stems toward the target, in areas where tissues have sti↵ened.
In each experiment, the plant with stem angle and location most similar to that of the correct
rod (i.e., the rod connected to the guiding node) is the first to attach. In each case, that first
leading plant continues to climb the rod until it reaches the target. In one experiment, a second
plant also attaches to the correct rod. The experiments are stopped once a plant reaches the
target. Out of over 20 total plants in all verification experiments, none of the plants attaches to
the incorrect rod (i.e., the rod leading to the feeding node). Taken together, these results suggest
that the robotic nodes are capable of reliably steering the plant through a binary decision, until
it reaches the specified target.

5.2 Final generation of decentralized hardware

Successful plant shaping experiments are reported in D1.2 Evaluation of mechatronics prototype
of the robotic symbiont including supporting software and above. They are conducted on a wooden
diagrid structure using a decentralized system of plant shaping robotic nodes [4]. However,
according to the consortium’s vision for the project, we follow braid as a methodology for sca↵old
construction, and open up to setups where plants may choose growth paths on a continuous field
instead of on a few discrete rods. This motivates the development of a new and final generation,
in which we also substantially improve e�ciency and reliability.

5.2.1. Primary robot nodes for growth attraction

The final version of the robotic node (see Fig. 50) is cylindrical with approximately 4.25 cm
radius and 4.5 cm height, substantially smaller than the previous version (cf. [4]). (The context
for the robotic nodes—the overall setup for plant interaction, including mechanics—is described
in D2.4 Report on the final algorithms and plant-a↵ection of bio-hybrid organism.)

For surrounding light intensity sensing, the robot is equipped with six GL55 photoresistors (cf.
four in the previous version [4]), and a TCS34725 RGB color sensor for the first time. The task

Deliverable D1.4 Page 57 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

LED

ports

High intensity

Photoresistor

circuit
Battery charger

Raspberry Pi

USB extension

sensor
IR-proximity

Figure 50: The final version of the plant shaping robotic node without 3D-printed casing, top
view.

of the photoresistors is to sense the emmitance status of neighboring robotic nodes, enabling
collective decision-making strategies based on this cue. The robotic nodes can then execute
growth patterns based on locally sensed information. In this version there are six photoresistors
to support a more circumferential view of light conditions, as the relative positions of neighboring
nodes are unconstrained, in contrast to the previous version where they were on constrained grid
positions. The RGB color sensor is included to enable the monitoring of photosynthetic light
spectra, to generally support the maintenance of plant health.

For plant proximity detection, the robot is equipped with ten GP2Y0E02B IR-proximity
sensors (cf. three in the previous version [4]), that provide a full circumferential view. In the
previous version, plants could only approach the node from specific discrete locations (two in a
2D setup or three in a 3D setup). In this version, plants may approach from any direction in a
continuous roughly 2D plane, so a more circumferential view is required. The field of view on
an individual IR sensor is extremely narrow, so the IR sensors are placed as densely as possible
around the node circumference, with ten sensors being the achievable maximum for this node
size (see Fig. 52 for a view of mechanical positioning around the edge).

For stimuli-driven plant actuation, the robot is equipped with six 1 W blue LEDs to attract
climbing plants by triggering their natural phototropism. The previous version used 3 W RGB
LEDs with o↵-the-shelf microcontrollers for heat management. This solution turned out to be
not ideal, getting very hot quickly and often blinking in the setup as it turned on and o↵ to
stop overheating. In this version of the robot we have therefore upgraded to a more e�cient and
reliable solution. The main light spectra triggering phototropism are UV and blue light, thus

Page 58 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 51: The final version of the plant shaping robotic node without 3D-printed casing, bottom
view.

RGB LEDs are not required because only the blue diode is used for directional stimuli. Here we
therefore use blue LEDs, moving the task of red light provision for photosynthesis to be outside
of the robot, in the general lab setup instead. This is suitable because red light conditions do
not shape plants, and therefore do not need control, ideally being uniform throughout the setup
and over time. The blue LEDs in the robots are 1 W instead of 3 W because the 1 W version is
significantly more e�cient, providing nearly the same lumens as the 3 W. Temperature sensing
and a fail-safe for overheating are located centrally on the PCB rather than at each LED.

Heat dissipation is managed by a custom waterjet cut aluminum heatsink (see Fig. 53) and
two 5 V fans. The LEDs each come o↵-the-shelf with a small heatsink. These are a�xed to the
six faces of the custom heatsink using epoxy that is thermally conductive and electrically insu-
lating. The heatsink is shaped as a donut, because the LEDs should be positioned around the
circumference of the node, and the Raspberry Pi board is located in the center. The LEDs and
heatsink do not make a full circle, as plants grow generally upwards and will not approach the
node from above, so the upper edge of the node does not require an LED. The custom heatsink
is flanged to maximize e↵ectiveness within the available space (see Fig. 51). The width of the
flanges, width of the gaps between them, and radii of the corners are all defined by the dimen-
sional constraints of the water stream size and machine path flexibility of the waterjet cutting
manufacturing process. As many flanges as possible are included within these constraints. Wa-
terjet cutting is chosen as manufaturing technique because it does not involve heat or sintering,
allowing material to be heat-treated before cutting, which is ideal for small-bath manufactur-
ing of aluminum heatsinks. Because thick sheet material is used and LEDs (which should be
perpendicular to the custom PCB) are mounted on the cut edge, high precision low-taper wa-
terjet is used. Flanges are not included where they would conflict with the Raspberry Pi board,

Deliverable D1.4 Page 59 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

and flange length is restricted to allow space for the 5 V fans, positioned on each side of the
Raspberry Pi board. Screw holes are included in the heatsink, and bolts with aluminum spacers
mechanically fix the heatsink to the custom PCB. As the PCB also generates quite some heat,
aluminum spacers are included between, to transfer heat. The overall heat dissipation strategy
enables continuous LED operation at 100% intensity (cf. 65% in the previous version [4]).

Figure 52: 3D-printed case cross-section showing the mechanical anchoring of an IR-proximity
sensor around the circumference of the robot node. The ten IR sensors are the primary compon-
ents requiring mechanical anchoring in the case, as other components are mechanically a�xed
to the PCB and heatsink.

Figure 53: Custom waterjet cut aluminum heatsink. Six LEDs are a�xed to the six faces of the
heatsink using thermal adhesive.

The robotic node has a power control system which can automatically switch from the oper-
ation on the external power supply to the internal battery. To decrease the time of development
and debugging the integrated solution PowerBoost 1000C used. It is based at the two IC:
TPS61090 - DC-DC Boost Converter for one-cell Li-Po battery which convert the 3.7 V battery
voltage to 5 V DC required for electronics operation and MCP73871—stand-alone system load
sharing and Li-Po battery charge management controller. With a PowerBoost 1000C and a 3.7 V

Page 60 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

2000 mAh LiPo battery, in case of a power outage the robot can still operate for a time period
of approximately six hours without plant actuation. This is an important fail-safe feature that
protects the robot’s hardware against sudden power cuts and allows for long-term plant-robot
experiments without interruption. The three micro USB ports onboard can be used to enhance
the robot capabilities by connecting it to external extension modules (e.g., growth repelling mod-
ule, phytosensing system). The ports also support I2C, GPIO serial communication with any
Raspberry Pi based device (e.g., robot or sensor).

The Raspberry Pi Zero W and custom PCB are the kernels of the robotic node. The custom
PCB (see Fig. 54) is a custom interface board between the Raspberry Pi and the sensors, LED
actuators, power, etc, and provides the Raspberry Pi with control of all implemented function-
alities. See Table 2, for a full components list.

Table 2: Final generation plant shaping robotic node component list.

Name Functionality Count

Sensors

GL55 Photoresistor Ambient light intensity sensor 6
10 k⌦ Thermistor Temperature sensor at the PCB 2
TCS34725 RGB color and clear light intensity sensor 1
Sharp GP2Y0E02B IR-proximity sensor 10
DS18B20 Digital temperature sensor 1
LSM9DS1 Accelerometer, magnetometer, and gyroscope 1

Actuators

CREE XP-E2 High intensity blue LED 6

Others

Raspberry Pi Zero WH Central control and processing unit 1
Custom PCB Interface Board An interface to the sensors and actuators 1
5 V fan Internal cooling device 2
PowerBoost 1000C Power management, battery charger circuit 1
3.7 V 2000mAh LiPo battery Backup power source 1

5.2.2. Extension system for growth repelling

One extension module that can be connected to a main node via micro USB, and powered and
controlled by that main node, is a spray module for growth repelling. The task of repelling growth
can extend the flexibility of the overall setup by allowing the addition of negative feedback into
what has so far been an exclusively positive feedback system. This repelling module (see Fig. 55)
is tasked with spraying auxin inhibitor Toprex 375 SC (Syngenta), as described in D2.4 Report
on the final algorithms and plant-a↵ection of bio-hybrid organism. Toprex is stable in water
solution, so can be kept in detachable refillable silicon bottles on the module. The main element
of the module is a DC motor driven digital spray head extracted from commercial product
automatic spray bottles. The spray head is mechanically fixed in a 3D printed case, which
includes continuous screw threads for the attachment of the bottle. The 3D-printed surface of
the threaded attachment point is coated in silicon for a watertight barrier. A high-precision
rubber gasket is set into the 3D printed case where the tube passes through from the spray head
to the bottle, creating a watertight seal.

Deliverable D1.4 Page 61 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 54: Custom PCB - the robotic node interface board (top and bottom view).

Page 62 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 55: Extension module for growth repelling by controlled spraying of auxin inhibitor.

5.3 Conclusion

In this section we introduced an experimental protocol for plant shaping experiments as well as
the robotics nodes for plant shaping. The nodes have been developed throughout the project
and they and the experimental protocol are at this stage at a mature level.

Deliverable D1.4 Page 63 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

6 Conclusion

This concludes deliverable D2.4 Evaluation of the robotic symbiont. The overall objectives of
work package WP 1 as stated in the Description of Work are:

Objectives: This work package has three objectives, which are the development of:
1) mechatronic basis for flora robotica; 2) interaction mechanisms between the robotic
and biological element of flora robotica; 3) software abstraction that allows e�cient
programming and experimentation with flora robotica

In the beginning of the project we developed a forest worth of exploratory prototypes which
have been crucial for our understanding of how robots and plants can work together. In par-
ticular, the completely unanticipated and carrying elements of braids was discovered in the first
year of the project and could not have been achieved without this exploratory work. After this
initial exploration we have focused and can document with this deliverable document that we
have met the objectives we set out to achieve.

Page 64 of 66 Deliverable D1.4

EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 56: The iterations of the node actuator (from left: version 0 to 3)

Appendix: Detailed development iterations of the Actuator Node

Version 0: Version zero was made with a PCB (printed circuit board) thickness of 1.6 mm and
general test layout to find bugs.

Version 1: In version one a couple of improvements was made, the board was redesigned to
reduce weight and by using 0.8 mm instead of 1.6 mm thick PCB.

Version 2: In the second version everything looked to function we moved from using ESProg
hardware design where GPIO0 is used, to shorting pin 25 to ground with a switch (see Fig. 22), the
switch changes the esp from normal execution mode to serial bootloader. We also implemented
the possibility for a 9 DOF (9 degrees of freedom) chip. A problem arose by switching from
the 3.3 V supply from the programmer to a 5 V power-supply, when using the 5 V there was a
problem with getting the esp’s to boot, by switching the power-supply o↵ and on we were able to
boot them on one by one. The cause of the problem was that the enable pin was floating when
multiple boards was put in series.

Version 3: The final version we solved the booting problem by adding a capacitor and imple-
menting reset button for doing hard-reset.

Deliverable D1.4 Page 65 of 66

EU-H2020 FET grant agreement no. 640959 — flora robotica

References

[1] E. Artin. Theory of braids. Annals of Mathematics, 48(1):101–126, 1947.

[2] Christian Kassel. Braid groups. Graduate texts in mathematics ; 247. Springer, New York,
NY, 2008. ISBN 9780387338415hbk.

[3] Y. Kyosev. Braiding Technology for Textiles: Principles, Design and Processes. Woodhead
Publishing Series in Textiles. Elsevier Science, 2014. ISBN 9780857099211. URL https:
//books.google.dk/books?id=K2F7AwAAQBAJ.

[4] Mostafa Wahby, Mary Katherine Heinrich, Daniel Nicolas Hofstadler, Ewald Neufeld, Igor
Kuksin, Payam Zahadat, Thomas Schmickl, Phil Ayres, and Heiko Hamann. Autonomously
shaping natural climbing plants: a bio-hybrid approach. Royal Society open science, 5(10):
180296, 2018. doi: 10.1098/rsos.180296. URL https://royalsocietypublishing.org/doi/
abs/10.1098/rsos.180296.

[5] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992.

Page 66 of 66 Deliverable D1.4

https://books.google.dk/books?id=K2F7AwAAQBAJ
https://books.google.dk/books?id=K2F7AwAAQBAJ
https://royalsocietypublishing.org/doi/abs/10.1098/rsos.180296
https://royalsocietypublishing.org/doi/abs/10.1098/rsos.180296

	Introduction: Overview of robotic symbiont
	Producing Braided Structures
	The braiding machine
	General functionality of modules
	Mechanics
	Electronics
	Developments

	Braiding with the machine: a theoretical view
	Determining the sequence of interactions
	Avoiding collisions between strands
	Conclusion – theoretical view

	From high-level model to braiding instructions
	Braid machine constraints revisited
	Braids - from matrix
	Braids - from graphs
	Braid simulation
	Conclusion – braiding instructions

	Conclusion

	Shaping of Braided Structures
	Distributed actuation
	Expansion and contraction with twisted fibers
	Distributed control of braided structures
	Motivation and assumptions
	Simulated environment

	Conclusion

	Sensing Plants
	Software overview
	Outdoor setup with the phytosensor
	Phytoactuation: robot arm setup
	Phytoactuation: event-driven Petri nets

	Production of phytosensors for tests, evaluations, certification and demonstrations
	Hardware exploitation: EMC tests and certification
	Operating phytosensor: interactions with users via color indication
	Conclusion

	Plant Shaping
	Verification experiments of single plant decisions
	Final generation of decentralized hardware
	Primary robot nodes for growth attraction
	Extension system for growth repelling

	Conclusion

	Conclusion
	References

