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1 Introduction

Figure 1: The flora robotica bio-hybrid system: robotic node (2nd generation, see chapter 2 for
3rd generation) and bean plants.

This is the final report of work package two called ‘Becoming.’ We present our results on algo-
rithms for the growth of bio-hybrids combining biological and artificial components (see Fig. 1).
The bio-hybrid structures that we grow in flora robotica can arguably be called ‘superorganisms.’
If “groups and communities can possess similar properties of functional organization,” then we
regard them as superorganism [10]. The idea of superorganisms in biology is rather old but was
revived especially in the context of honeybee research [7, 10]. The concept is, however, open
to any organism and Wilson and Sober [10] even mention a suggested plant experiment in their
paper. Carrapiço [2] identifies ecological behaviors in Azolla (an aquatic fern) in cooperation
with microorganisms. Sanders [6] speaks of a superorganism in fungal and algal growth. The su-
perorganism concept was not explicitly investigated in flora robotica but our robotic nodes form
a decentralized, self-organizing system (requirement for swarm intelligence) and they closely in-
teract with a group of plants. The plants, in turn, react to the stimuli triggered by the robots,
hence, help to form a ‘functional organization.’

An algorithm for autonomous bio-hybrid growth provides clearly defined steps that allow for
the e�cient design of plant-robot bio-hybrids and it is implemented in flora robotica’s demon-
strator of a bio-hybrid system. The algorithm controls complex plant and robot behaviors as
required for the ‘becoming’ of a bio-hybrid triggering the growth and form of desired shapes.

One main challenge of this project was to consolidate two worlds of scientific experiment:
plant science and robotics. In chapter 2 we present our experiment protocol of steered bio-
hybrid growth. We extend the variety of possible shapes by adding the functionality of repelling
growth (see Sec. 3.2).

Chapter 4 is committed to applications of measuring in planta electric potentials and its
utility in flora robotica’s bio-hybrids. The extensive data analysis was done to study di↵erences
in phytosensing data in response to light of various colors. Moreover, interesting results about the
possibilities of detecting in planta cutting plant organs are presented. Preliminary plant ‘training’
e↵ects based on phytosensing may have consequences in future bio-hybrid developments and even
in plant science.
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Chapter 5 is dedicated to the Vascular Morphogenesis Controller (VMC). We investigate a
variety of possible structures generated and controlled by VMC and analyze decision-making
in self-assembly processes using VMC. The potential of VMC is described in detail and the
corresponding hardware implementations are presented in deliverable D3.3.
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2 Algorithm for autonomous bio-hybrid growth

In previous deliverables we have reported a first generation of robots for plant shaping via light
stimuli, tested in a small set of experiments lasting up to seven weeks. New experiments and a
new generation of robot development are presented in D1.4 Evaluation of the robotic symbiont.
We have also established a more generalized protocol for this type of plant-robot experiment,
which we are in the process of making publicly available as a resource (paper conditionally
accepted [9]). Here are reported the software and setup sections of our generalized open-source
protocol, with examples given in images of the final generation setup. The robot hardware section
is reported in D1.4 Evaluation of the robotic symbiont.

The protocol reported here is for the basic approach (i.e., using only attractive stimuli).
Extensions to repelling stimuli are handled in the following section.

2.1 Generalized open-source protocol

2.1.1. Robot control for bio-hybrid shaping

Robot Control:

Step 1. During each experiment, run the software protocol on each robot in parallel, enabling
their autonomous behavior.

Step 2. Establish two possible states for the robot (see Fig. 2):

(a) A ‘stimulus’ state during which the robot emits blue light at the required intensity.

(b) A ‘dormant’ state during which the robot either emits no light or emits red light.

Step 3. Depending on the experiment type, give the appropriate predefined information. In
control and single-decision experiments, assign each robot a state to continuously execute. In
multiple-decision experiments, supply to each robot a full configuration map of the pattern
of plant growth to be tested in the current experiment.

Step 4. In multiple-decision experiments, run the ‘Initialization’ process, as follows.

(a) Set the location of the robot within the setup.

(b) Compare the robot’s location to the supplied map. If the robot’s location is the first
location on the map, set the robot to ‘stimulus;’ otherwise, set the robot to ‘dormant.’

(c) ‘Initialization’ process ends.

Step 5. In multiple-decision experiments, run the ‘Steering’ process, as follows. Execute
iteratively.

(a) Check the robot’s IR-proximity sensor reading to see if a plant has been detected.

(b) If a plant is detected and the robot is set to ‘dormant,’ then maintain.

(c) If a plant is detected and the robot is set to ‘stimulus,’ then:

(i) Notify the adjacent neighboring robots that a plant has been detected, and include
the robot’s location in the message.

(ii) Set the robot to ‘dormant.’

(iii) Compare the robot’s location to the map. If the robot is at the last location on
the map, then send a signal over WLAN that the experiment is complete.
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Figure 2: Two unenclosed robotic nodes of the final generation, with the left node set to ‘stimulus’
and the right node set to ‘dormant.’

(d) Check the robot’s incoming messages from its adjacent neighboring robots to see if one
of them that was set to ‘stimulus’ has detected a plant.

(e) If a ‘stimulus’ neighbor has detected a plant, compare that neighbor’s location to the
robot’s location, and also compare to the map.

(f) If the robot is at the subsequent location on the map, set the robot to ‘stimulus.’

(g) End the iterative loop of the ‘Steering’ process once a signal has been received that the
experiment is complete.

2.1.2. Context: lab conditions and experiment setup

Experiment Design:

Step 1. Place robots and mechanical supports in a grid large enough to cover the growth
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area and pattern being tested in the experiment. The minimum setup includes one row and
two columns of robots.

Step 2. Below the bottom row of robots, place a row of the standard diagonal mechanical
supports, matching those throughout the setup. Where the lower ends of these supports
intersect, join them mechanically with a ‘y-joint.’ For each ‘y-joint’ at the base of the setup,
plant a uniform number of plants according to the size of the diagonal grid cell (roughly one
plant per 10 cm of exposed mechanical support length), with the plant health maintenance
conditions described above.

Step 3. Experiment setup. Select an experiment type to run, and where relevant select a
quantity and distribution of robots.

(a) Experiment type 1: Control. This experiment type tests growth of the climbing
plants in conditions absent of light stimuli to trigger phototropism. It can run on any
size and shape of setup. In Step 3 of the robot control protocol, assign all robots
the ‘dormant’ state and run continuously until results are manually assessed to be
complete. In a successful experiment, none of the plants will find or attach to the
mechanical supports.

(b) Experiment type 2: Single decision. This experiment type tests the plants’ growth
trajectories when presented with binary options—one support leading to a ‘dormant’
robot and one support leading to a ‘stimulus’ robot. It runs only on the minimum
setup (i.e., one row, two columns). In Step 3 of the robot control protocol, assign one
robot the ‘dormant’ state and one robot the ‘stimulus’ state. Run continuously until
one of the two robots detects a plant with the IR-proximity sensor. In a successful
experiment, the robot with the ‘stimulus’ state will detect a plant after it had grown
along the respective support.

(c) Experiment type 3: Multiple decisions. This experiment type tests the plants’
growth when presented with multiple subsequent stimuli conditions, that trigger a series
of decisions according to a predefined global map. It can run on any size and shape of
setup that has more than the minimum number of rows (i.e., two or more). In Step 3
of the robot control protocol, provide a global map of the pattern to be grown. Then
execute Step 4 and 5. In a successful experiment, at least one plant will have grown
on each support present in the global map. Additionally, no plant will have chosen
the incorrect direction when its growing tip is located at the currently active decision
point. (To clarify, extraneous growing tips are not considered here, if for instance a
branching event places a new growing tip at an obsolete location on the map.)

Plant Species Selection Procedure:

Step 1: Plant species selection. This protocol focuses on the plant behaviors related
to climbing, directional responses to light, and the health and survival of the plants in the
specific season, location, and experimental conditions. (An example species meeting the
selection criteria is the climbing common bean, P. vulgaris.)

(a) Select a flowering species known to display strong positive phototropism towards UV-A
and blue light (340–500 nm) in the growing tips. This will mean that, in the selected
species, the phototropins (light-receptor proteins) in the plant will absorb photons
corresponding to wavelengths 340–500 nm. When the receptors are triggered, first
swelling will occur in the stem by the preferential relocation of water to the stem tissues
opposing the triggered receptors, causing a reversible directional response. Then, within
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the stem auxin (plant patterning hormone) is directed to the same tissue location,
perpetuating the directional response and fixing stem tissues as they sti↵en.

(b) Select a species that is a winder, in which the circumnutation behavior is pronounced
and the growing tip has helical trajectories with large enough amplitude to wind around
the mechanical supports used in the specific experimental conditions. The twining
behavior exhibited by the selected winder should tolerate the environment and nutrient
conditions present in the experiment, and should tolerate mechanical supports with
angle of inclination up to 45�.

(c) Select a species that will grow reliably and quickly in the experimental conditions, with
an average growth speed not less than approximately 5 cm per day, and preferably faster
if possible.

(d) Select a species that will display the required behaviors in the present season and
geographic location.

Step 2. Ensure the species tolerates the range of environmental parameters that will be
present in the experimental setup. The plant should tolerate an absence of green light and
an absence of light outside the visible spectrum (400–700 nm), as in the setup the plants will
be exposed only to isolated blue light and isolated red light. The phototropism reaction in
the plant will respond to light from blue diodes with peak emission �max = 465 nm, and pho-
tosynthesis in the plant will be supported by red diodes with peak emission �max = 650 nm.
The plant should also tolerate any present fluctuations in temperature, kept at approximately
27�C, as well as any present fluctuations in humidity and watering.

Plant Health Monitoring and Maintenance Procedure:

Step 1. Locate the experiment setup in controlled environmental conditions—i.e., indoor
with no incident daylight or other light external to the conditions described below, with
controlled air temperature and humidity, and with controlled soil watering. Monitor the
conditions with sensors that are connected to a microcontroller or single-board computer
that is WLAN enabled.

Step 2. Maintain plant photosynthesis using LED growth lamps external to the robots and
facing the experiment setup. The growth lamps should deliver monochromatic red light to
the setup, with red diodes having peak emission at approximately �max = 625–650 nm, with
no critical wavelengths outside the range 550–700 nm, except for a low incidence of ambient
blue light if helpful for the health of the selected species. (If a low incidence of ambient blue
light is included, restrict to levels at a very minor fraction of those emitted by a single robot,
see Fig. 3.) If using lamps that include LEDs of a color other than red, obstruct those.
Provide the levels of red light required for the health of the selected species, for instance
for P. vulgaris provide roughly 2000 lumens or more in total. Orient the growth lamps to
face the experiment setup, such that their emittance is distributed roughly evenly over the
growth area. Monitor the ambient light conditions using an RGB color sensor.

Step 3. After germinating, provide each plant its own pot at the base of the experiment
setup. Provide suitable soil volume and type for the selected species, for example roughly
3 l of commercial gardening soil per pot for P. vulgaris that will grow to several meters in
height. Ensure the soil and seeds have been sanitized prior to germination. If needed, use
suitable pest control methods to prevent or manage insects.

Step 4. Regulate air temperature and humidity levels, accordingly for the selected species
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Figure 3: Growth lamp setup in lab for delivering red light. O↵-the-shelf lamps with blue LEDs
obstructed to limit them to minor incidence.

(e.g., a temperature of 27�C for P. vulgaris). Monitor levels using a temperature-pressure-
humidity sensor. Levels can be maintained using heaters, air conditioners, humidifiers, and
dehumidifiers.

Step 5. Monitor the soil using a soil moisture sensor, and maintain an appropriate rate
of watering for the selected species. This can be executed using an automated watering
system where water is delivered to the soil via nozzles as triggered by the soil moisture
sensor readings (see Fig. 4). Alternatively, the soil can be watered manually, as regulated by
the sensor readings.

Recording Procedure:

Step 1. Store data (from sensors and cameras) initially at the single-board computer where
the data has been generated onboard. Run onboard reply servers that respond to needed
requests, such as the last stored sensor reading. At regular intervals upload the data and log
files over WLAN to a local network-attached storage (NAS) device.

Step 2. Capture time-lapse videos of the experiments continuously using cameras positioned
at two or more vantage points, with at least one camera view encompassing the full experi-
ment setup. Ensure the captured images are of high enough resolution to adequately capture
the movements of the plant growing tips, typically only a few millimeters in width. Automate
the image capture process to ensure consistent time intervals between captures, using either
an onboard camera on a single-board computer, or a stand-alone digital camera automated
with an intervalometer or similar. Install lamps to act as flashes, automated similarly to
the cameras. Ensure the flashes are bright enough to compete with the red light of the
growth lamps without dramatically post-processing the images for color correction. Locate
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Figure 4: Lab setup of automatic watering system, with P. vulgaris germinated in individual
pots at the base of the experiment setup.

the flashes such that the experiment setup can be fully illuminated and therefore clearly
visible in images. Synchronize the cameras and the flashes such that all cameras capture
images simultaneously, during a 2 s flash period. Capture the images every 2 minutes, for
the duration of each experiment.

Step 3. Log the environmental sensor data, specifically the readings from the temperature-
pressure-humidity sensor, the RGB color sensor, and the soil moisture sensor. Log the data
from all robots in the setup, specifically the IR-proximity sensor and photoresistor readings,
as well as the internal state of the robot which defines its LED emittance status.

Step 4. Make all recorded data available for remote monitoring of the experiments, via regu-
lar real-time reports (see Fig. 5) or visualizations, to ensure correct conditions are maintained
for the full duration of a potentially months-long experiment.

2.2 Implications for bio-hybrids and plant-robot experiments

Congruent with the increasing prevalence of automation in manufacturing and production, robots
are being utilized to sow, treat, and harvest plants. We use robot technology to automate plant
experiments in a non-invasive manner, with the purpose of steering growth via directional re-
sponses to stimuli. Traditional gardening practices have included the manual shaping of trees
and bushes by mechanical restraint and cutting (see Fig. 6). We present a methodology that can
for instance be applied to this shaping task, by steering growth patterns with stimuli. Our pre-
sented methodology is also a step towards automated plant experiments, with a specific focus on
providing light stimuli. Once the technology has become robust and reliable, this approach has
potential to reduce costs in plant experiments and to allow for new automated experiments that
would otherwise be infeasible due to overhead in time and manual labor. The robotic elements
are freely programmable and act autonomously as they are equipped with sensors, actuators for
stimuli provision, and microprocessors. While we focus on proximity sensing (i.e., measuring dis-
tances at close-range) and light stimuli, many other options are feasible. For example, sensors can
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Figure 5: Screen capture of example hourly email report for remote experiment monitoring.

be used to analyze plant color, to monitor biochemical activity, or for phytosensing approaches
to monitor for instance environmental conditions through plant electrophysiology. Similarly, ac-
tuator options might provide other types of stimuli, through vibration motors, spraying devices,
heaters, fans, shading devices, or manipulators for directed physical contact. Additional actu-
ation strategies (see fabrication and steering of braided mechanical sca↵olds in D1.4 and D3.3)
could be implemented to provide slow mobility to the robots (i.e., ‘slow bots’ [1]), such that they
could gradually change the position and direction from which they provide stimuli. Furthermore,
as the robots are equipped with single-board computers, they could run more sophisticated pro-
cesses such as visioning for plant phenotyping or artificial neural network controllers for stimuli
actuation (as previously reported in D2.3). As the plant science research focus is often on early
growth (i.e., in shoots), the whole domain of using autonomous robot systems to influence plants
over longer periods seems underexplored and may o↵er many future opportunities. Going even
one step further, the robotic elements can be seen as objects of research themselves, allowing
the study of the complex dynamics of bio-hybrid systems formed by robots and plants closely
interacting. The robots selectively impose stimuli on the plants, the plants react according to
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their adaptive behavior and change their growth pattern, which is subsequently detected by the
robots via their sensors. Our approach closes the behavioral feedback loop between the plants
and the robots and creates a homeostatic control loop.

(a) (b)

Figure 6: Images from our flora robotica site visit to UK firm Full Grown
(https://fullgrown.co.uk). Traditional manual shaping processes to grow plants into furniture,
which could be automated or semi-automated by a future development of our robotic nodes for
plant shaping.

The presented methodology shows initial steps toward automating the stimuli-driven steering
of plant growth, to generate specific patterns. This requires continuous maintenance of plant
health, while combining into a single experiment setup the distinct realms of biochemical growth
responses and engineered mechatronic functions—sensing, communication, and controlled gen-
eration of stimuli. As our focus here is on climbing plants, mechanical support is also integral.

A limitation of the current setup is its scale but we believe our methodology easily scales.
The mechanical sca↵old can be extended for larger setups and therefore longer periods of growth,
which also allows expanded configurations and patterns. Here the setup is limited to two dimen-
sions and binary left-right decisions, as growth is limited to a grid of mechanical supports at
45�inclination, and plant decision positions are limited to that grid’s bifurcations. Mechanical
extensions may include 3D sca↵olds and di↵ering materials, to allow for complex shapes.

The methodology can be considered as a system to automatically grow patterns defined by a
user. By extending the possible complexity of mechanical configurations, users should face few
restrictions on their desired patterns. For such an application, a user software tool should confirm
that the pattern is producible, and the mechatronics should then self-organize the production of
the pattern by generating appropriate stimuli to steer the plants. The software should also be
extended to include recovery plans and policies determining how to continue with the growth
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if the original planned pattern has partially failed—for instance if the first activated robot has
never detected a plant but the dormant ones have seen that the position of the growing tips are
beyond the activated robot.

The current setup focuses on light as an attraction stimulus. If the desired pattern requires
a separation between di↵erent groups of plants—e.g., the desired pattern needs two groups of
plants to choose opposite sides—then it may not be feasible using only one type of stimulus. For
such complex growth patterns independent of sca↵old shape, the di↵erent groups of plants can
potentially be grown in di↵erent time periods such that their respective attraction stimuli do
not interfere, which would also allow the integration of branching events. However this may not
always be a suitable solution, and the standard attractive light stimulus could then be augmented
by repelling influences such as shading, or by other stimuli like far-red light or vibration motors.

The method and the experiment design are a step towards a sophisticated methodology to au-
tomatically influence directional growth of plants. The experiment setup is basic by determining
only a sequence of binary decisions in the plants and we focus on one, easy to manage stimu-
lus. Additional studies would be required to prove the method’s statistical significance, to add
more stimuli, and to control other processes such as branching. With su�cient development to
guarantee the long-term reliability of the robots, the presented methodology could allow for au-
tomation of plant experiments over long time periods, reducing the overhead associated with the
study of plant development stages beyond that of shoots. Similar methods can allow for future
investigations into the underexplored dynamics between biological organisms and autonomous
robots, when the two act as tightly coupled self-organizing bio-hybrid systems.
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3 Supplementing autonomous shaping in bio-hybrids by growth repelling

3.1 Extending control protocol to growth repelling

The basic approach for bio-hybrid plant shaping can be extended to achieve greater flexibility in
patterns by supplementing the attractive stimulus with a repelling stimulus. Multiple repelling
stimuli are candidates (see below), and can be substituted within the same hardware platform,
as the final generation of robotic nodes are extensible via external modules that can be powered
and controlled by the main robotic node (see D1.4 Evaluation of the robotic symbiont). Here
are reported the revisions to the robot control protocol above for a setup that includes repelling
extension modules. Steps 2, 4, and 5 of the control protocol contain revisions for such an
extension.

Step 1. No change.

Step 2. Establish three possible states for the robot:

(a) A ‘stimulus A’ state during which the robot emits blue light at the required intensity.

(b) A ‘stimulus B’ state during which the robot directs its extension module to deliver the
repelling stimulus.

(c) A ‘dormant’ state during which neither the robot nor its extension module deliver a
stimulus that impact directional growth.

Step 3. No change.

Step 4. In multiple-decision experiments, run the ‘Initialization’ process, as follows.

(a) Set the location of the robot within the setup.

(b) Compare the robot’s location to the supplied map. If the robot’s location is the first
location on the ‘growth’ map, set the robot to ‘stimulus A.’

(c) Otherwise, compare the robot’s location to the negative zones of the map (i.e., the ‘no
growth’ zones). If the robot’s location is within the ‘no growth’ zones AND within
radius r (where r is the distance within which the repelling stimulus is e↵ective) of the
height in line with the map’s base, set the robot to ‘stimulus B.’

(d) otherwise, set the robot to ‘dormant.’

(e) ‘Initialization’ process ends.

Step 5. In multiple-decision experiments, run the ‘Steering’ process, as follows. Execute
iteratively.

(a) Check the robot’s IR-proximity sensor reading to see if a plant has been detected.

(b) If a plant is detected, always notify the adjacent neighboring robots that a plant has
been detected, and include the robot’s location in the message.

(c) If a plant is detected and the robot is set to ‘dormant’ or to ‘stimulus B,’ then maintain
state.

(d) If a plant is detected and the robot is set to ‘stimulus A,’ then:

(i) Set the robot to ‘dormant.’

(ii) Compare the robot’s location to the ‘growth’ map. If the robot is at the last loca-
tion on the map, then send a signal over WLAN that the experiment is complete.
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(e) Check the robot’s incoming messages from its adjacent neighboring robots to see if one
of them has detected a plant.

(f) If a neighbor has detected a plant, then:

(i) Compare that neighbor’s location to the robot’s location, and also compare to the
‘growth’ map.

(ii) If the neighbor is set to ‘stimulus A’ AND the robot is at the subsequent location
on the ‘growth’ map after the neighbor, set the robot to ‘stimulus A.’

(iii) Otherwise, if the robot is within the ‘no growth’ zones AND the neighbor is within
r of the robot, set the robot to ‘stimulus B.’

(iv) Otherwise, maintain state.

(g) End the iterative loop of the ‘Steering’ process once a signal has been received that the
experiment is complete.

3.2 Repelling growth by spraying plant growth inhibitors

In deliverable 2.3 we reported results of investigation on finding appropriate stimulus for in-
hibiting growth of plants. Blue light is utilized as plant growth stimulator and as trigger of
phototropism, that is, redirection of growth towards a blue light source. The usage of TIBA
dissolved in lanolin cream (2,3,5triiodobenzoic acid) was shown in D2.3 as e↵ective in decreasing
plants growth rate. However, application of TIBA in cream is unfeasible for being robotized and
automated, but TIBA is degraded in water in short time, so water solutions are infeasible. Spray-
ing of growth inhibitors was chosen as a more reasonable application considering automation in
our application. Having this in mind, we tested commercial growth inhibitors for their e↵ectivity
in inhibiting growth of beans. Farmers use them mostly to make rape (Brassica napus) more
robust and to synchronize flowering. All tested substances are stable in water solution, non-
toxic in reasonably small amounts for humans, inexpensive, and easily available on the market.
Moreover, they can have additional antifungal e↵ects (for example Toprex and Caryx). We have
tested Toprex 375 SC (Syngenta), Fazor 80 SG (Arysta Life Science) and Caryx 240 SL (Bayer)
for e↵ect on inhibition of beans growth 7. Beans were sprayed once in water solutions with a
simple plant sprayer. Approximately 10 ml were applied per plant. Applied concentrations:

1. 0.4% Fazor 80 SG (Maleic hydrazide)

2. 0.3% Toprex 375 SC (difenokonazol and paklobutrazol)

3. 0.5% Caryx 240 SL (metkonazol and mepikwat chloride)

The treated beans had grown for ten days after germination and close to the phase of the
prominent stem elongation. The strongest e↵ect, measured as growth inhibition in comparison
to non-treated plants, was observed for Toprex. Beans treated with Toprex grew almost ten
times less than non-treated beans: 2.63 cm for Toprex treated vs. 19.65 cm for control plants.
No deleterious side e↵ects were observed. A repetition of the experiment with Toprex influence
on beans growth resulted in the same outcome. We choose Toprex as the best ‘repellent,’

growth inhibitor, that might be used in final bio-hybrid for counteracting fast plants

growth rate, which, if being uncontrolled, might make impossible to obtain our

desired shapes of architectural artifacts. Hardware modules for the autonomous utilization
of Toprex in bio-hybrids are described in D1.4 Evaluation of the robotic symbiont.
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3.3 Influence of far-red light on bean growth

Choosing a chemical growth inhibitor for spraying provides us with an e�cient tool for inhibiting
bean growth. However, we have studied alternatives to inhibit plant growth. The idea of using
di↵erent light wavelengths not only for redirecting plant growth, but also for inhibiting the
growth was considered an option and having potential for being more precisely applied than
sprayed chemicals. The clear e↵ect of light intensity on plant growth rates was reported in
deliverable D2.3, but there were di�culties to precisely control strong white light. We decided
to test e↵ects of far-red light on plant growth, too. E↵ects of far-red light on plants strongly
depends on red:far-red light ratio and consequently phytochrome signaling. Many developmental
processes are influenced by phytochrome signaling pathways, for example: flowering, germination,
and shade avoidance response.

Red light is used as Photosynthetic Active Radiation and is stable during the day in the
flora robotica bio-hybrid system. A manipulation with di↵erent intensities of far-red light might
enable us to influence plant growth. Having in mind the shade avoidance response we expected
that far-red light may act as growth inhibitor. As preliminary proof-of-concept experiments, we
investigated the influence of constant far-red light in semi-natural light conditions (greenhouse).

Two far-red LED panels were delivered by Cybertronica and tested for their influence on
beans growth rate in greenhouse conditions. Each panel (see Fig. 9) consists of 10 far-red LED
OSLON SSL 80 GF CS8PM1.24-3S4S-1, 730 nm, IF = 350 mA, VF = 1.85 V mounted with
thermally conductive epoxy adhesive on the aluminum profile (20⇥ 80⇥ 200 mm3) that acts as
heat sink to provide e�cient LED cooling and as basement plate for LED mounting. Sunlight
was coming mostly from the ceiling and one side of the greenhouse. Additional ceiling light
was switched on, on cloudy days. Our relatively strong far-red light source was installed 20 cm
above soil with bean seeds. Some beans were exposed to stronger, some to weaker far-red light,
depending on their distance to the far-red light source. Five days after germination, the non-
treated plants (avg. 22.6 cm, stdev. 3.5 cm, n = 30) were similar to the treated plants (avg.
23.7 cm, stdev. 2.1 cm, n = 30). Germination rate was high for both the controls and far-red
treated beans. We observed no significant di↵erence in the growth rates and plant development.
The only observed di↵erence was a one week faster sign of senescence (yellow leaves) of the
far-red treated beans, that is, six vs eight weeks.

In the second version of experiment far-red light was installed on the side of growing beans and
it also did not make any di↵erence in beans growth rate and growth direction (i.e., no negative
or positive phototropism reaction). The more enlighten or more shady side of beans culture was
direction of applied far-red also did not make any di↵erence. Also no influence on branching
was observed in any experiments with far-red LEDs. Despite that far-red light was shown to
influence plants growth and development, our tests on far-red LEDs in greenhouse conditions did
not shown any promising results for potential application in bio-hybrid beans growth control.

Deliverable D2.4 Page 17 of 48



EU-H2020 FET grant agreement no. 640959 — flora robotica

Figure 7: Example far-red treated (on the bottom) and control plants. Beans were growing in
greenhouse with 12 hours day, 12 hours night and constant far-red for stimulated plants. Plants
on the image are one week after germination.

Figure 8: Far-red treated plants in the side directed far-red light experiment. Beans were growing
in greenhouse with 12 hours day, 12 hours night and constant far-red for treated plants. Two
generation of plants in two flowerpots are visible (front black one and behind).
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Figure 9: 10 LED 730 nm far-red panel.
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4 Phytosensing for the bio-hybrid application

4.1Data analysis of a plant’s electric potential to identify color of light

As reported previously, we use the Phytosensor of CYBRES as tool to monitor plant physiological
reactions to environmental factors. As reported in Deliverable 1.3, experiments with phytosensing

have shown that repetitive mechanical stimulation results in repetitive changes in the electric
potential between electrodes inserted in plant stems. However, the results suggested that it may
be di�cult to distinguish reactions of di↵erent types of stimulation, such as touching, shaking,
and cutting leaves. In this report we present results on using our Phytosensor to analyze plant
electrophysiological reactions to changing light conditions. Light of di↵erent colors is used for
growth manipulation in our flora robotica bio-hybrids.

Understanding plant electrical signaling is a great challenge, mostly because of the lack of
methods and models, that may prove to be as useful as in the case of animals. Recently, up-
dates on methodologies have been reported for both electrophysiological data analysis and the
design of experiments to reveal signal propagation mechanisms [8, 5]. Also machine learning
techniques were found to be useful in the classification of abiotic stresses in plants, such as salt
and drought [5]. It is one of our most successful approach for plant sensing besides other in-
vestigations in flora robotica. Not applicable here are too specialized methods, such as stomata
electrophysiology.

Electrodes were inserted into stems of 14 DAG (Days After Germination) tobacco (Nicotiana
benthamiana) and 20 DAG tomato plants (Lycopersicon esculentum) with a 3 cm distance be-
tween the electrodes. The Phytosensor was collecting data of electric potentials every 11 seconds,
in average 110 reads every 20 minutes, 330 reads every hour, 7,920 reads daily. Note that long
term measurements are costly and not many repetitions can be done, also due to unwanted and
unpredictable terminations of the Phytosensor after a few days in operation. However, in flora

robotica we are mostly interested in short time plant reactions to stimuli and as reinforcement
of a bio-hybrid’s action. For data analysis we chose ten datasets that were collected in five
experiments, four conducted on tobacco, and one on tomato.

Plants were cultivated in stable temperature with regular, short-time changes in the light
conditions (red, green, blue, and optionally no light: 20 min interval for each light color phase;
NeoPixel 144 LEDs strip). We assume that for flora robotica natural circadian changes are of less
important and we are more interested in short term plant reaction to changing light wavelengths.
This is relevant when robotic nodes dedicated to plant shaping switch to di↵erent light colors
or switch their lights on and o↵ within seconds. The change in the light wavelength is rapid
and discrete. The developed data analysis software tool uses several Python packages, such as
Pandas, Numpy, Matplotlib, Statsmodels, and Sklearn.

Plots of electric potential data show similar issues as before, as they are usually lacking a
clear, stable trend. An analysis was performed on two di↵erent scales of data: from 50,000 to
over 100,000 sensor readings, and also batches of 2,000 reads. Signals generally were constantly
fluctuating in a range of a few thousand micro-volts, that seems to be caused by plant cells
and apoplast changes in ion concentrations and subsequent biopotential changes, see Fig. 10.
We failed to assign irregularly occurring outliers to specific time or any environmental change.
A cause for datasets with biases or rapid shifts in their potential level (up to 10,000 µV ) may
be unstably inserted electrodes. Support for this hypothesis is that biases and shifts occurred in
only one out of two plants that were simultaneously measured. Plots of parts of the data with
stable potential level showed usually regular peaks with approximately similar frequency and
amplitude (see Fig. 10). There was no significant di↵erences in means, medians, and standard
deviations of collected data that was grouped by light colors. Calculating di↵erences between
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Figure 10: Example plots of plants electric potentials from Phytosensor measurements. Elec-
trodes were inserted into tobacco stems and 20 min. of red, then green, then blue light was
applied to plants. One lag represent one read, one read every 11 seconds. C) present the slice
form data plot in A), respective situation with D) and B). On A),C) and B),D) there are results
of di↵erent potential channels measured in di↵erent plants in the same experiment. On E) and
F) channels 1 & 2 respectively, 1,000 reads from another experiment on tobacco. No clear trends
or seasonality related to the operating light color or time of day was found.

reads from di↵erent light groups seems useful in order to remove seasonality and to find structure
in the data (using the above mentioned software library: pandas.di↵(); periods of 110; 220; 330;
440). The time periods investigated with the Di↵()-method were directly related to length of
one light wavelength phase, that is, 20 min and multiples. This method did not help in finding
any hidden data structure and seasonality (see Fig. 11).

In order to use machine learning classification methods, the datasets were fragmented ac-
cording to the light color operating on plants, that is, 110 reads per fragment labeled with the
respective light color for each. Random forest and k-Nearest-Neighbours (KNN) were used as
classification methods on statistical values of datasets for every light cycle. Statistical values
were used as the light cycle’s features were: min(), max(), mean(), median(), and kurtosis().
Di↵erent parameters were tested: k for KNN in range 1 to n� 1, n-estimators in a range of 1 to
100 for random forests. The training set and the test set were 70% and 30% of the full dataset
(from 12,000 to over 100,000 reads). Accuracy for both methods was lower than or similar to
random classification probability. So we found that light-labeled data does not di↵er, if we con-
sider statistical parameters. The same machine learning methods run on raw electric potential
data also do not find any e�cient light color classifications. None of the tested machine learning
methods allowed for e�cient classification of light cycles corresponding to di↵erent light color
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Figure 11: Example plots of plants electric potentials from Phytosensor measurements after
applying di↵erence method to Phytosensor data. Periods of 330, 220, and 110 are the length of
one light color phase, that is, 20¿min. One lag represent one read, one read every 11¿seconds;
A), B), C) show the same channel with applied di↵erent number of periods to calculate di↵().
Respectively D), E), F) the second channel form the same experiment. No clear trends or
seasonality related to operating light color were found after using di↵erence methods.

classes. Given the current state of development of the Phytosensor, the obtained data doesn’t
allow for direct light color detection from data ‘processed’ in plant stem.

The data was found to be (at least for some of the datasets) mostly free of time correlations
but for some time series we found time-dependent characteristics. We did not find any depen-
dency on light wavelengths. Augmented Dickey-Fuller Tests (ADF) and autocorrelation plots
inspections were done to evaluate if the time series are time-dependent, see Fig. 13. However,
for most of the experiments the Augmented Dickey-Fuller Test (ADF) suggested that data was
not time dependent. Di↵erent statistical models were applied to plant electric potential data:
autoregression model, Autoregressive Integrated Moving Average (ARIMA(p, d, q)), Seasonal
AutoRegressive Integrated Moving Average with eXogenous regressors model (SARIMAX), and
Holt-Winters exponential smoothing, see Figs. 12 and 14. None of these models has predictive
power. However, a closer look on some dataset fragments revealed some repetitive patterns in the
potential changes. These do not simply overlap with light phases, but may be light-dependent
in more complex ways. Without correlation with time it is feasible to start working with the
ARIMA model as means do not di↵er within dataset fragments. Although we used an extensive
grid search for optimal ARIMA parameters, the forecasting power of the model was still rather
poor. The predictions were all ill-formed and predicted trivial patterns for the whole dataset.

Interestingly, correlations between two di↵erential potential channels di↵er a lot between
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Figure 12: Autoregression prediction results for both channels from three experiments with
tobacco A-D and tomato E-F; red line: autoregression results; blue line: test data.

di↵erent measurements, despite their similar experimental designs. For most of the dataset
correlations between di↵erential potential channels was below 0.2. This was rather surprising
because the needles for both channels were inserted into plants, that were growing in the same
conditions, and the electrodes were inserted into analogous organ points. Therefore, the strong
correlations between channels were expected. The lack of these correlations may indicate strong
individual variance between datasets caused by the influence of microscopic di↵erences in inser-
tions of electrodes. Di↵erent types of tissue could be reached and di↵erent damages could occur
within plants organs.

The extensive analysis of plant-electrophysiological data was done in order to elucidate
changes in plants electric potentials in response to di↵erent light wavelengths. In future work,
we plan to test artificial neural nets (e.g., LSTMs) for the recognition of patterns in the electro-
physiological data. Applying LSTMs may prove to be helpful in order to find a characteristic
response to changing light wavelengths or responses to other temporal patterns in electric poten-
tials. Considering a longer time horizon and research perspective, also other experimental setups
would be worth to consider, such as using other light sources or inserting electrodes in other
plant organs or in di↵erent ways. One of the main reasons of the slow progress in deciphering
plant’s electrical signals is the lack of e�cient methods to measure electrical potentials in the
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Figure 13: A, B: Autocorrelation plots from two channels; C), D: autocorrelation di↵erence
(periods = 110) plots from respectively data plotted on A and B; E, F: autocorrelation di↵erence
(periods = 330) plots from respectively data plotted on A and B.

tissue/cells of interest. The di↵erences of detected plant reactions to switched on light here and
in the next section might be caused by di↵erent experiment setups on the level of insertion of
electrodes, subjected plant species, and their anatomy. Moreover, updating the hardware and
the light color in the Phytosensor readings may ensure that light labels will be added to the
correct sensor readings.

A plant damage detection, assuming that no other stress occurs, is presented in the following.
Moreover, first successful applications of plant electric biopotentials in simple bio-hybrid systems
are also described. Changes in potentials after switching light on/o↵ are detected. We also find
that using the Phytosensor to detect whether light reaches a plant, may be feasible in the future.
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Figure 14: A, B: Results of ARIMAmodel prediction for two channels from the same experiment;
C, D: results of Holt-Winters model prediction for two channels from the same experiment; E:
both channels plotted together; F: results of forecast done with fbprophet. Channel 1 is also
presented on A and C and is one of the rare dataset with more complex data structure.
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4.2 Application of Phytosensor in plants damage detection

In our bio-hybrid experiments we plan to use Phytosensor bio-potential measurements to detect
damages of plants, such as cutting leaves or branches. The idea is to detect short-time plant
reactions for di↵erent types of stimulation, such as light, touching leaves, temperature changes,
etc. These cannot always be clearly distinguished, however, we assume that cutting leaves is a
strong stimulation simplifying the task slightly. We would need to find clearly distinctive spikes
compared to the background signal of bio-potentials.

In Fig. 15 we show the results of our experiment for detecting cut leaves by bio-potential
measurements. The reactions of two similar Dracaena plants were measured with two Phytosen-
sors. The two channels of bio-potential measurements were used at each Phytosensor, that were
connected at di↵erent branches of the same plant. The reaction of channels 1 and 2 in plants A
and B are di↵erent. We call them: high-spike and low-spike. Plant B generates high-spikes and
low-spikes. Plant A generates two low-spikes. The actual form of the spikes depends on the
placement of the electrodes and on the polarity of the electrodes. It may even be possible not
only to detect a damaged plant but also to localize the cut within a plant’s architecture.

The signal of the cut plant was characterized by di↵erent circadian bio-potential values and
it reacted dissimilar to a stimulation compared to the undamaged plant. In Fig. 16 we show data
of two weeks of a bio-potential signal from a branch that was not cut (red line) and a branch
that was cut (black line). By cutting a branch, the plant’s integrity was interrupted and also its
vascular tissues. We observed that withering of the cut branch did not limit the detection of the
bio-potential circadian cycle that is similar to the healthy, uncut branch. Measured potential
signals are specific for living plant tissues and disappear quickly with cell death. As a next step,
the identified ‘cut-specific’ spikes should be compared with spikes triggered by other stresses to
verify their uniqueness.

4.3 Coupling of Phyto-sensing with light stimulation

The use of the Phytosensor is not limited to measuring plant reactions to stresses, it can also
be used for the actuation and stimulation of plants (see Fig. 17). The actuator added to system
does not only measure the plant potentials, but also influences the plant. Hence, we close the
feedback loop in our bio-hybrid system.

In this experimental setup, we combine the Phytosensor with electrodes inserted into a Ficus
and an additional sensor stick for environmental monitoring (see Fig. 18). Two di↵erent actuators
(plant stimulus) were added to the system to trigger plant reactions: a red/blue plant growth LED
lamp (28 W) and and room fan (25 W). The experiment partially follows the work of Gagliano
et al. [3]. The actuators were connected to the PC-controlled power outlet relay module. Hence,
we establish a possibility to switch on/o↵ the LED lamp and the fan by software. Our key
assumptions for this experiment are:

• We consider the ‘external observable parameter’ as the output measure (e.g., light is a part
of the bio-hybrid system, on/o↵ time as an output parameter).

• The feedback loop changes the observable output parameter.

• The environmental stimuli a↵ect the system, thus we can observe a complex plant response.

In Fig. 19 we give a schematic overview of the experiment with imposed feedback loop based
on bio-potential measurements. The LED lamp was turned on and o↵ by the processed bio-
potential Channel 1 signal (Z-score calculations, see Fig. 19). The Z-score (standard score) value
of the bio-potential is calculated by a moving window average and compare to a predefined
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Figure 15: Detection of the plant damage (cutting leaves) with ‘spiking’ reaction at bio-potential
measurement. Two Dracaena plants were cut and their potentials were measured: left: plant A;
right: plant B.
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Figure 16: Detecting a cut branch: bio-potential measurement showing long-term circadian cycle
and di↵erent behaviors between the undamaged (red line) and damaged (black line) branch
of the Ficus plant.
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Figure 17: The extension of Phytosensing system that will provide the phyto-actuating and
interaction with users.

constant threshold. In the case that the Z-score is greater than the threshold we turn the light
on, otherwise we turn it o↵. The logic is the following: an increase of ‘Z-based noise’ in the
bio-potential signal of Channel 1 during the ‘light OFF-phase is necessary to turn the light on.

We ran the experiment for a few days and interesting plant responses were discovered (see
Fig. 20). The bio-potentials within the Z-based feedback loop after a few days of ‘training’ lead
to turning o↵ the light (the point ‘A’, evening) and turning on the light (the point ‘B’, morning)
autonomously (see Fig. 20c). This can be interpreted as an indicator for adaptive physiological
functionality.

After a few days of Z-based light control, the light on/o↵ phases were set to periodical control
with a 10 minutes ‘light on’ phase and a 10 minutes ‘light o↵’ phase. During the initial hours
of the experiment, an excessive noise level (Channel 1) in the ‘light o↵’ state was observed (see
Fig. 21, a, black line). Note that in previous experiments with the same plant and setup the
increase of Z-based noise in the bio-potential signal of Channel 1 during the ‘light o↵’ phase was
the condition to trigger the ‘light on’ event. An interesting observation was made after ⇠8 hours
of periodical light on/o↵ control. Channel 1 was not perturbed with excessive noise anymore and
then the electric potential of plant seemed di↵erent (see Fig. 21b, black line). The continuation of
this bio-potential measurement experiment with periodic light on/o↵ control is shown in Fig. 22.

The periodic 10 min light on/o↵ plant excitation lasted for two days. At one moment we
deactivated the periodic light on/o↵ control script, that is, there was no further light excitation.
During the next expected ‘light on’ event (the event did not occur as the light was turned o↵)
the bio-potential almost exactly reacted in the same way as previously, but without external
light stimulus (see Fig. 23, red point A). This experiment suggests that plants have an ability to
adapt to cyclic excitations.

In the next experiment, we introduce the second stimulus. Along with light we use a fan as
neutral stimulus. The periodic 10 min on/o↵ phases were used as before, but now we split the
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Figure 18: The plant bio-hybrid ‘black-box’ experimental setup. Ficus plants with two di↵erential
potentials channels measured by Phytosensor. The light which was switching ON/OFF was the
only light source for the ‘in-black box’ plant.
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(a)

(b)

Figure 19: (a) The plant bio-hybrid system as ‘black-box’; (b) schematics of reinforced training
within the bio-potential z-based feedback loop.

Deliverable D2.4 Page 31 of 48



EU-H2020 FET grant agreement no. 640959 — flora robotica

(a)

(b)

(c)

Figure 20: a) Screenshot of ‘light on’ events; b) potentials measured in di↵erent branches; c) plant
‘self-regulation’ of illumination time.
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(a)

(b)

Figure 21: Bio-potentials in two channels for Dracaena plant, periodic ‘light on’ and ‘light o↵’
control. (a) z-based feedback loop light control; (b) ⇠8 hours after z-based feedback loop light
control.
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(a)

(b)

(c)

Figure 22: Bio-potentials in two channels for Dracaena plant, periodic ‘light on’ and ‘light o↵’
control. (a) ⇠8 hours later; (b) ⇠24 hours later; (c) ⇠48 hours later.
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Figure 23: The Dracaena plant bio-potentials after periodic light on/o↵ control algorithm was
terminated and light was constantly o↵.

experiment into three training phases:

1. Only the fan is operating; periodic 10 min on/o↵ cycles; duration of 6 hours.

2. The light and the fan are operating; periodic 10 min on/o↵ cycles; duration of 12 hours.

3. The fan is operating only; periodic 10 min on/o↵ cycles; duration of3 hours.

The results of this experiment are shown in Fig. 24. We summarize:

1. No spikes in the bio-potential signal at the moment of the ‘stimulus o↵’ event in this phase
(only fan is operating).

2. There are spikes in the bio-potential signal at the moment of the ‘stimulus o↵’ event in
this phase (fan & light are operating). We assume that the periodic light on/o↵ excitation
triggered these spikes.

3. There are spikes in the bio-potential signal at the moment of ‘stimulus o↵’ event in this
phase (only fan is operating). The spikes last for the first two to three hours and no spikes
are observed when only the fan operates in the on/o↵ excitation experiment again.

Associative learning in plants was reported by Gagliano et al. [3] and could be implemented in
flora robotica using the Phytosensor. In the future this may result in development of innovative
and more e�cient bio-hybrid technologies.
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(a)

(b)

Figure 24: The Dracaena plant bio-potentials with periodic excitation training using two stimuli
(fan and light); (a) training phase 1, only fan is operating; (b) training phase 2, fan & light are
operating, and training phase 3, only the fan is operating.

Page 36 of 48 Deliverable D2.4



EU-H2020 FET grant agreement no. 640959 — flora robotica

5 Vascular Morphogenesis Controller (VMC): further investigations of
morphological behaviors

The Vascular Morphogenesis Controller (VMC) is a distributed model of morphogenesis inspired
by the competitions between branches of plants for common resources. The model has been
initially introduced in D2.2 and has been improved and investigated for e↵ects of certain param-
eters in D2.3. Here we continue our study in terms of morphological and dynamic behaviors in
a set of simulations. The physical implementation of the model studied in a series of scenarios
in guiding the growth of braided structures is presented in D3.3.

Figure 25: A schematic of two example structures with the same number of nodes. The nodes at
the left main branch are indicated in blue and the nodes at the right main branch are indicated
in orange.

In D2.3, we have studied a number of morphological features of a particular implementation
of VMC. Here we use a similar framework of simulations but we switch to a stochastic imple-
mentation of growth in respect to the addition and deletion of nodes and look more closely into
a selected number of intrinsic morphological and dynamic behaviors of VMC.

The study is performed for the internal tendency of the VMC structures towards asymmetry
of the shape and dynamics of the morphology (i.e., growth and retraction) in the absence of
any environmental asymmetry (e.g., any variation or gradient existing in the environment) or
structural information. For that, no external e↵ects including sensory information and physical
interactions between the di↵erent parts of the structure or between the structure and environ-
ment are implemented. Therefore, the dynamics and behaviors are merely the result of internal
interactions and dynamics via the vessel system. We limit the study to a setup with one root
node and two children for every node. The simulation starts with the root node and its two
children: one child positioned at the left side and the other at the right side of the root. None
of the nodes of this initial structure are allowed to be removed during the experiment. Fig. 25
shows two schematic example structures with the same number of nodes and di↵erent shapes. In
the following, the set of experiments investigating some of the intrinsic morphological behaviors
of the VMC due to di↵erent parameterizations are presented. Since there is no environmental
information, all the sensor-dependent parameters are set to zero in all the experiments.

5.1Morphological Aspects: Asymmetry and Adaptivity

The two children of the root start the two main branches of the structure. The asymmetry of the
grown structures in respect to these two main branches is measured. The asymmetry is defined
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here as the absolute di↵erence between the proportion of nodes at the two main branches at the
end of a run

asymmetry =
|NL �NR|

Ntotal
, (1)

where NL and NR are the number of nodes at the left and right side of the structure respectively,
and Ntotal represents the structure’s size which is the total number of nodes excluding the root.

In addition to asymmetry regarding the final morphology of the structure, we define a measure
of dynamicity capturing an aspect of changes in the structure during the growth process. Dy-
namicity is defined as the proportion of deleted nodes during the growth process of the structure
to the final size of the structure

dynamicity =
D

Ntotal
, (2)

where D is the number of nodes that are deleted during the course of the experiment.
A set of simulation runs with di↵erent parameterizations are performed. Every run starts

with the root node and its immediate children and grows for a period of time. To define a
stop condition for a run, the maximum size of the structure during development is recorded
and the run continues until 50 time steps after the recorded maximum size. Reaching this stop
condition in a limited time period is guaranteed by setting the consumption rate of the nodes
(c) to a positive value that constrains the size of the structure. Since all the sensor-dependent
parameters are set to zero, in the following we respectively use �, ⇢, and ! to indicate �c, ⇢c,
and !c. Note that without the sensory information, the successin produced in all the leaves are
the equal.

Table 1: List of parameters and their values
parameter value

↵ 0.1, 0.5, 0.9
� 0, 0.5, 1.0, 2.0, 10.0
⇢ 0.25, 0.5, 0.8, 1.0
! 0, 0.1, 1.0
c 1

Rroot 20

Table 1 shows the di↵erent parameter values used in the simulations. Every parameterization
is executed for 25 independent repetitions. In this implementation, children of a node are deleted
with a high probability (95%) if all of them have a resource value below 1 (thdel = 1). Probability
of adding children to a leaf i is proportional to the share of resource at the leaf (Ri/Rroot).
Perfectly simultaneous growth of di↵erent leaves is avoided by randomly choosing one leaf at a
time step from the pool of candidate leaves.

Fig. 26 shows the asymmetry, and dynamicity of the di↵erent setups and the size of the
structures in each case. The bars represent the values averaged over all repetitions and the
whiskers represent the standard deviations. As seen in the figure, ! = 0 leads to relatively
symmetric structures with a medium number of nodes and low dynamicity. This is due to the
fact that without any input (sensor) value or constant production rate, no successin is produced
and therefore there is no di↵erence between the thickness of vessels leading to equal distribution
of resource independent of other parameters. The minimal asymmetry is only due to the transient
e↵ect of random choice of leaves for growth.

For the setups with �  1, the structures are symmetric. This is inline with results of our
theoretical analysis in D2.3 implying that �  1 is a su�cient (but not necessary) condition for
tendency towards growing symmetrically, when all other things are equal.
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(a)

(b)

Figure 26: Asymmetry and dynamicity of VMC structures with di↵erent parameterizations. The
colored bars (top part) represent the values averaged over all the repetitions and the whiskers
represent the standard deviations. The red dots represent the number of nodes in the structure
at the end of the runs. The gray bars (bottom part) indicate the values of each parameter.

For values of ! > 0, ⇢ > 0.5, � > 1, the structures are asymmetric with low dynamicity. With
the high value of � = 10, dynamicity is minimal, reflecting the low amount of deletion occurring
during growth.

For values of ⇢  0.5 = 1
n (where n = 2 is the number of children of a node), the structures

are symmetric except for the setup with ! > 0, ⇢ = 0.25, � = 10. This exception seems to
be deviating from the theoretical analysis1 presented in D2.3 which stated that the necessary
condition for a tendency towards asymmetry is ⇢ > 1

n and therefore predicting symmetry for
⇢ < 1

n . The same e↵ect (high asymmetry and deviation from the theory) can be also seen
for other values of ⇢ < 1

n (an example will be shown below). The reason for this unpredicted
behavior is the delay in the updating of the values within the structure. It is more clear when
looking at the extreme case of ⇢ = 0. In this case, no successin passes from one level to the next.

1Note that the analysis assumed convergence of values which is not necessarily the case for all setups
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Therefore, the only e↵ect of successin is to regulate the thickness of the immediate connections
of the leaves and other connections always get a successin of zero. Consider the process of growth
starting from the initial structure (the root and its two children). In the beginning, both leaves
get the same amount of resource and have equal chances to grow. After the first growth event
(at either branch), the weight of the connection behind the grown node starts to decay towards
zero (with rate ↵) because it is not an immediate connection of a leaf and thus gets no successin.
Therefore, the branch gets a decreasing share of the resource. However, the resource that was
already delivered to that node continues its distribution among the child nodes. Every leaf with
a large share of resource is likely to grow. This applies also to new leaves as they emerge. For
some time, the grown branch has higher chances for growth due to larger number of leaves that
still hold enough resource to grow. Eventually, the resource is too much divided at the side
of the grown branch and the chances for further growth decrease. Meanwhile, the resource at
the single leaf of the other side has increased due to the presence of successin at its immediate
connection to the root versus no successin at the other side (no immediate leaf). Therefore, the
short side starts growing with a large amount of resource which again goes through the same
process of decay of connections and division of resource. In parallel to this new growth, the
previously larger side loses its nodes due to their small resource values until there are no nodes
left except the initial leaf of that side. The leaf has now an immediate connection to the root
again and attracts the resource. Thus the fluctuating asymmetry between the two main branches
continues. The fluctuation can be recognized by looking at the measure of dynamicity and the
size of the structure. In Fig. 26(b), comparatively high values of dynamicity and low number of
nodes (small size of structure) are observed for all setups with ! > 0, ⇢ = 0.25, � > 1. Recall
that the dynamicity reflects the proportion of deletion rate during the growth process relative
to the size of the structures.

Fig. 27 shows the asymmetry and dynamicity along with the number of nodes for a parameter
sweep experiment on the values of ⇢ in a setup with ! = 0.1, � = 10, and ↵ = 0.9. As seen in
the figure, around the critical value of ⇢ = 0.5 = 1

n (where n = 2 is the number of children of a
node), the behavior changes from high dynamicity and small structures (small number of nodes)
to large and stable structures. The measured asymmetry increases both above and below the
critical value. Above the value, the increase in asymmetry (up to fully asymmetric structures
for larger values of ⇢) is accompanied by an increase in the number of nodes and a decrease in
dynamicity. That means, if the ⇢ > 1

n , large stable structures grow increasingly asymmetric for
the higher values of ⇢. Below the critical value (⇢ < 1

n ), the high asymmetry along with the very
small number of nodes and high dynamicity indicates fluctuations of small unstable structures
with a few nodes repeatedly growing and disappearing again in one side or the other.

Another example of parameter sweep experiment on the values of ⇢ is shown Fig. 28. The
figure demonstrates asymmetry, dynamicity and the number of nodes for the setups with ! = 0.1,
� = 2, and ↵ = 0.9. Around the critical value of ⇢ = 0.5 = 1

n (where n = 2 is the number of
children of a node), the behavior changes from high dynamicity and small fluctuating structures
to large and stable structures.

5.2Decision Making Performance of the Collective System

Due to the probabilistic nature of the current implementation for addition and deletion events,
every growth trajectory shows a number of fluctuations in the number of nodes at each side of
the structure. Likewise, the amount of resources assigned to each side changes. Fig. 29 shows a
set of example dynamics of rL, the fraction of resource assigned to the left side of the structure,
which is calculated as rL = RL/(RL +RR).

As expected from the previous section, the behaviors for the various settings demonstrated
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(a)

(b)

Figure 27: Asymmetry, dynamicity, and number of nodes for VMC structures with di↵erent
transfer rates (⇢) in setups with ! = 0.1, � = 10, ↵ = 0.9.

in Fig. 29 are di↵erent. For example, Fig. 29(a) shows an unstable decision for assigning the
resource to a side which constantly fluctuates between the two sides. The setting of Fig. 29(b)
on the other hand never decides on one side during the course of the experiment. In Fig. 29(c),
the structure quickly chooses one side to grow by assigning most of the resource to it from the
early steps. The example of Fig. 29(d) shows some fluctuations in the amount of resource and a
final decision for one of the two sides.

The presented behaviors are a result of the competition for the limited resource that is
provided at the root (i.e., Rroot). Here, we call the assignment of more resource to one side of
the structure, a decision making. In the following, the influence of Rroot on the performance of
the decision making of the structures is investigated. For that, we used the parameter settings of
the experiment of Fig. 29(d) which represents some dynamics with a period of fluctuations and
eventually convergence to a decision during the course of the experiment. The performance is
defined as the di↵erence between the fractions of the resources at the two sides of the structure
after a fixed period of time:

performance = |RL �RR|/(RL +RR)

where RL andRR are the amount of resource assigned respectively to the left and right sides of the
structure after 250 time steps. The performance is measured for a set of di↵erent values of Rroot.
Every setting is repeated for 9000 independent runs. Fig. 30 shows the median performance of
the tested Rroot values. The inset image shows the performance computed based on the number
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(a)

(b)

Figure 28: Asymmetry, dynamicity, and number of nodes for VMC structures for di↵erent trans-
fer rates (⇢) in the setups with ! = 0.1, � = 2, ↵ = 0.9.

of nodes at the end of the run instead of the resource values (i.e., the asymmetry measure
|NL �NR|/Ntotal)).

The Fig. 30 shows very low performances for very low values of Rroot. The performance moves
up by increasing Rroot and after an optimum value for Rroot (⇠ 40 in this case), the performance
drops again. The shape of the curve is similar to the generic diagram of system performance over
system size for multi-robot systems. The available resource here, Rroot, is a representative for
the system size as it is nearly linearly proportional to the final number of nodes in the structure.
The reason for this proportionality is that every non-leaf node holds a constant fraction of the
resource (according to the consumption rate).2 The shape of the performance curve here is
similar to multi-robot systems with low interference between the robots, for example due to a
body-less (point-like) simulation of robots. That is consistent with the fact that in the current
system, we have not implemented any physical e↵ects that could cause physical interactions and
potentially lead to interference between the nodes.

As discussed in the theoretical analysis in D2.3, the preconditions for a tendency towards
asymmetrical growth in VMC is � > 1 and ⇢ > 1

n where n is the number of children in every
growth event. Both conditions are satisfied in the settings that are used here with n = 2, ⇢ =

2The number of non-leaves is linearly proportional to the number of leaves in such a graph, for example, in a
2-branch graph as in here, the number of non-leaves equals to the number of leaves minus one.
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(a) ↵ = 0.9,� = 2, ⇢ = 0.25,! = 0.1 (b) ↵ = 0.9,� = 1, ⇢ = 0.8,! = 0.1

(c) ↵ = 0.9,� = 10, ⇢ = 0.8,! = 0.1 (d) ↵ = 0.9,� = 2, ⇢ = 0.8,! = 0.1

Figure 29: Example trajectories of rL = RL/(RL +RR), the fraction of resource assigned to the
left side of the structure for di↵erent parameter settings. In all examples Rroot = 20 and all the
sensor dependent parameters are set to zero.

0.8,� = 2. Such a tendency to asymmetry is the positive feedback e↵ect of growth at a branch,
either directly or indirectly via the growth of its children, and means further growth at branches
with more nodes.

Although the positive feedback leads to reinforcement of asymmetries and higher performance,
it has a smaller e↵ect in larger systems compared to smaller ones. The following example helps to
explain the reason by comparing two systems of the same symmetrical conditions but di↵erent
sizes (Fig. 31 illustrates two example systems). Let G be a perfect binary tree of depth r.
Assuming an identical successin production of Sleaf at all the leaves, the amount of successin
at the main left and right branches of the tree after a growth event at the right branch is:
SL = (2r�1)⇢rSleaf, SR = (2r�1 � 1 + 2⇢)⇢rSleaf. Hence the proportional successin di↵erence
between the left and the right branches is (SR � SL)/(SR + SL) = (2⇢� 1)/(2r � 1 + 2⇢). The
r is larger in a larger system and therefore such a system has a lower proportional di↵erence.
That means a smaller change in the share of the resource reaching each branch, that is, a smaller
increase in the possibility of further growth at the right branch. In other words, a change in a
large system loses its e↵ectiveness due to a long path between the position of the change and the
root. In the same way, in a small system, a growth event makes bigger changes in the distribution
of the resource in favor of the larger branch. That leads to a larger positive feedback e↵ect and
amplification of growth and facilitates the decision making.

The above mentioned decrease in the positive e↵ect of growth when increasing the system
size can explain the lower performance of the larger systems demonstrated in Fig. 30. However,
where the system is too small (very small Rroot), the robustness of the positive feedback e↵ect
is reduced. That is because the amplification e↵ect has two sides: a change in the resource
distribution and growth in the system can be either due to the positive feedbacks and follows
the previous growth events, or it can be due to random fluctuations. Random fluctuations are
easily amplified at first and lead to a di↵erence between two sides of the system. But in a system
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Figure 30: Performance of the decision for one side of the structure with di↵erent values of Rroot.
The triangular dots represent median performance of 9000 independent runs for each setting.
All the sensor dependent parameters are set to zero. The inset image shows the performance
computed based on the number of nodes at the end of the run instead of the resource values.

with a very low amount of resource, the amplification of the first growth events cannot continue
for long to produce many new leaves at the majority side. That is because after a few steps, the
leaves of the majority branch get too little resource that limits their chance of growth (negative
feedback). This puts them in a condition similar to the leaves of the other branch. The next
growth events rely mainly on the random fluctuations. In a small system, a single change has
a larger e↵ect compared to a large system. In addition, the di↵erence in the number of leaves
(options for random growth) at the two sides is small because of the early stop of the majority
branch. Therefore, a growth that happens at the minority side due to a random event, is hard
to compensate at the majority side. The change at the minority side may be reinforced and win
the new majority which is again unstable. This can explain the low performances of very small
systems in Fig. 30.

In short, the performance can be seen as the e↵ectiveness of the positive feedback on the
asymmetry to lead to a majority decision. For high values of Rroot, performance is reduced
because of the negative contribution of the length of the main branch, whereas for low Rroot, the
negative feedback (limitation of resource) cancels out the positive feedback in early stages and
therefore the random fluctuations are the main contributors to the dynamics. The performance
peak is where the two e↵ects balance each other.

5.3Discussion

In the simulation studies, the e↵ects of di↵erent parameterizations in dynamical and morpho-
logical behaviors of the structures were demonstrated. An interesting example is the e↵ect of
transfer rate ⇢ in the dynamic behavior of the structures. The low values of ⇢ < n (where n
is the number of children of a node) lead to unstable small structures where a small number of
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(a) (b)

Figure 31: Two example systems with larger (a) and smaller (b) system sizes.

nodes appear and disappear quickly causing large fluctuations in small structures. With values
of ⇢ > n, large and stable structures grow. The change from instability to stability and the
explosion of size, makes ⇢ an interesting parameter with a critical value in ⇢ = n.

The behavior of VMC structure in terms of exploitation vs exploration depends on the param-
eterizations. The parameters determine the tendency of the structure to explore various options
(tendency towards symmetry), to stick to older solutions (asymmetry), or to exploit the current
best options. The tendency for current best options is to grow further in the local optima of the
environment, that is, growing branches that are currently in favorable regions. Another option
is a tendency towards historical choices which is a preference for choices which are made in the
past, that is, larger branches. An example is to prefer a branch because it is large, even though
it is not any more in a favorable region. The actual decision of the structure depends on both
the parameters and the gradients of inputs in the environment.

As discussed in the previous section, the diagram of decision-making performance against
the common resource (Fig. 30) in VMC displays similarities with the generic diagram of system
performance over system size in multi-robot systems [4]. In general, an analogy can be drawn
between the collective process of growth in a VMC structure and a collective decision-making
process in a multi-robot or a swarm of agents. As an example, consider a multi-robot decision-
making scenario where the robots have two choices. In the beginning, the individual robots choose
one of the two possibilities with equal probability because the possible e↵ects of interactions
have not yet appeared. Considering the robots as the limited resource of the system, in the
beginning, the resource is more or less equally distributed between the two options. Over time,
the distribution may change due to fluctuations and interactions between the robots and may
lead the system to collectively choose one of the options over the other. The robots in this
scenario are both the limited resource that is distributed and the active agents that carry out
the distribution via a collective dynamic process. On the other hand, in the VMC system, the
concept of distribution of resource is more explicit. The growing system distributes a limited
resource between two sides of the system (left/right branches). The resource is in fact expressed
as nodes that grow in the structure – recall that a non-leaf node represents a constant amount
of resource (according to the consumption rate), a leaf node may cause the growth of new nodes
in relation to the amount of resource it holds, and it may be removed if it gets a low amount of
resource. In other words, the nodes act both as the representatives of the resource and the active
agents carrying out the process of growth and distribution. Similar to the robotic scenario, the
system begins with an equal distribution of resource between the two options. Over time and via
the fluctuations in the system and interactions between the nodes competing with each other,
the distribution may change and eventually reach a state where most of the resource is assigned
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Figure 32: Feedback loops for the resource stored on a path or branch.

to one side of the system for long periods of time.
VMC is inspired by plant morphogenesis and acts on the branching of structures consisting

of components that can be added or removed from the system. It implements the concepts
of exploration of the environment and reinforcement of favorable branches while losing least
favorable ones. Such concepts are shared with self-organized path formation by swarms of mobile
agents. As an example, consider the formation of pheromone trails connecting the nest of ants to
patches of food. Initially, the individual scout ants that have found a food source lay pheromone
in their rather randomly chosen path towards the nest. The pheromone acts as a volatile memory
that is stored spatially in environment. It is perceived by other ants and guides them to the food
source. The other ants reaching the food, in turn, lay pheromone in their way back to the nest
which generates a positive feedback leading to reinforcement of the shortest paths between the
nest and the food sources. The role of the mobile agents (e.g., ants) in path formation is fulfilled
in VMC by the flows passing through the connection paths that are imposed by the nodes of the
directed graph. The positive feedback generated by the reinforcement of favorable paths for the
ants is similar to the positive feedback on favorable branches generated by the flows of successin
in a VMC system. In both systems, the positive feedback building up the paths collectively is
stabilized by the negative feedback. If the food source at the end of a path is limited, it can act
as a negative feedback causing the ants to leave the path and form new ones. Another negative
feedback which is more of the interest here is the limitation of the number of ants as the limited
resource for the structure of the paths. This is similar to the limited resource in VMC that is
distributed along the di↵erent branches. To make the role of the limited resource in the feedback
loops more clear, we can define two variables that influence each other (as demonstrated in
Fig. 32): A) the resource that is stored on a path/branch, that is, determines the thickness of a
path/branch. B) the available resource which is the resource that is not yet settled somewhere.
The feedbacks are considered in respect to A. The positive feedback is quite a direct e↵ect of A
on itself, but the negative feedback of A goes through B, that is, the ‘available resource,’ as
shown in Fig. 32. In addition to these e↵ects, the positive feedback in the path formation of
ants is influenced negatively by the volatility of the pheromones. In VMC, the positive feedback
e↵ect decreases by the negative contribution of the length of branches due to transfer rate ⇢ < 1
(as discussed in the previous section).
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6 Conclusions

The results reported in this deliverable D2.4 provide several essential solutions for our current
and potential future bio-hybrid developments. Mostly we report continued e↵orts that were
started before and that provide the methodology to achieve the project’s objectives. This is the
case, for example, for our algorithms for bio-hybrid growth, that were developed iteratively in
di↵erent types of plant-robot setups. We had started from simple setups and have increased the
complexity step by step. Also, our work on the VMC was started almost at the beginning of
the project. The study here shows our gathered experience and knowledge about the VMC in a
mature form. The VMC is applied in flora robotica in di↵erent forms but is also a contribution
to the community and it will most likely be applied also in the future beyond this project.
Applications of the Phytosensor have been constantly studied and advanced. However, the
complexity of plant anatomy, the lack of structures analogous to nervous systems, and the lack
of a full holistic understanding of plants, cause that plant electric potentials are challenging
to apply in bio-hybrid systems. Further improvements in experimental methodology and data
analysis could make it possible to apply the Phytosensor for monitoring of environments and
plant physiology. The presented detection of plant damage by analyzing Phytosensor data is
ready to use in our flora robotica experiment setup.

In conclusion, we note that this deliverable D2.4 is one of the first documents that extensively
and comprehensively reports on algorithms for plant bio-hybrid growth and plant a↵ection of
bio-hybrids. Especially the chapter on algorithms for bio-hybrid growth may be useful in future
research on bio-hybrid plant systems. The presented data from our plant-electrophysiological
experiments can be of similar use in future research, especially to show the potential of this
technology. Similarly for the VMC, as said, it will be a useful tool across di↵erent domains.
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